

Préparée à l'Ecole normale supérieure
Dans le cadre d’une cotutelle avec l'université de Tel Aviv

Modélisation du langage par réseau de neurones,
approche par simplicité

Simplicity-Based Language Modeling Using
Artificial Neural Networks

Soutenue par
Nur LAN
Le 7 mai 2024

Ecole doctorale n° 158
Cerveau, Cognition,
Comportement

Spécialité
Sciences cognitives

Composition du jury :

Giorgio MAGRI
Directeur de recherche CNRS,
Paris 8	 	 	 	 	 Président

Hava SIEGELMANN
Provost Professor, University of
Massachusetts Amherst	 	 Rapporteure

Noga ZASLAVSKY
Assistant professor,
University of California, Irvine	 	 Examinatrice

Roni KATZIR	 	 	 	 	
Associate professor,	 	 	 Co-encadrant	
Tel Aviv University	 	 	 de thèse
	 	 	 	 	
Emmanuel CHEMLA
Directeur de recherche CNRS,
Ecole normale supérieure	 	 	 Directeur de thèse

Contents

Acknowledgments 3

Introduction 6

1 Minimum Description Length Recurrent Neural Networks (joint with Michal Geyer,
Emmanuel Chemla, and Roni Katzir) 10

2 Benchmarking Neural Network Generalization for Grammar Induction (joint with
Emmanuel Chemla and Roni Katzir) 26

3 Bridging the Empirical-Theoretical Gap in Neural Network Formal Language Learn-
ing Using Minimum Description Length (joint with Emmanuel Chemla and Roni
Katzir) 37

4 Large Language Models and the Argument From the Poverty of the Stimulus (joint
with Emmanuel Chemla and Roni Katzir) 50

Résumé français 113

Acknowledgments

This work is due to two brilliant minds who I was very fortunate to have as advisors – Roni Katzir

and Emmanuel Chemla. I will thank them in chronological order of meeting.

Roni’s seminar about learning, computation, and cognition at TAU was a revelation both

literally and figuratively: coming in I did not know what any of it meant, and coming out I knew

that I wanted to have a part in it. Roni’s teaching holds you captivated from beginning to end,

traversing all fields of science and often touching on the philosophical and the sublime. Yet it

always ends in concrete research questions that combine all of these together in the most original

and elegant way. I learned from him how to think critically, how to strive for meaningful research

questions, and above all how to distinguish competence from performance, not only in linguistics.

I am thankful to him for always being available, both for listening and for sharing his infinite

knowledge with endless kindness and patience, and for explaining things again and again until I

would finally understand.

I first met Emmanuel in late 2019 when I arrived at ENS as a visiting student. At that time I

was simply hoping to join his research on animal linguistics which I liked from afar. Fortunately

for me this meeting led to four magical years of learning from Emmanuel about topics as diverse

as neural networks, signaling games, semantics, human and animal cognition, and so much more.

This turned out to be a common experience: one usually starts working with Emmanuel on a

single project only to discover that he also knows about, and can do, literally everything else.

On top of that, somehow, Emmanuel is also the kindest and most thoughtful advisor, colleague,

and friend one can hope to have. This combination made my work so much easier than it should

have been. I am grateful to him for always being there to listen to my nonsense ideas, and for

what I believe is his biggest talent: to abstract away from earthly thoughts and turn them into

non-nonsense ones.

I owe my studies at ENS to Philippe Schlenker, who initially made my visit there possible, and

was later present in them through enlightening meetings and lectures, and through his never-ending

line of works that I keep revisiting for inspiration. I am grateful to Paul Egré and Benjamin

3

Spector for their insightful guidance as members of my thesis committee. And I thank the jury of

my thesis defense – Hava Siegelmann, Giorgio Magri, and Noga Zaslavsky – for their valuable

feedback on this work and during the defense. I especially thank Hava for sharing her knowledge

in person and for inspiring parts of this thesis through her seminal works.

Most everything I know about neural networks is due to Yair Lakretz and his illuminating

course on biological and artificial networks which he originally taught at TAU. It was a pleasant

coincidence to end up in the same office as Yair in Paris a few years later, thanks to which I had

free access to a constant source of knowledge about the brain, academia, science, and philosophy.

Meeting Amir Anvari was the rare kind of occasion where one recognizes greatness in real

time. Any conversation with Amir, whether about linguistics, computer science, politics or movies,

stays with you for a lifetime. I deeply envy his ability to read thoughts and to put them back

together for you in the most concise and poetic way. I thank him deeply for doing this often

enough in my presence, which helped me understand what it was that I was actually trying to do.

I thank Mathias Sablé-Meyer for his kind support and for inspiring me at different points

of my studies, both through stimulating discussions and by always being much ahead with his

original and beautiful research.

While at ENS I was lucky to be in the presence of some very smart people who are fortunately

also very nice. I thank Nadine Bade, Jeanne Bruneau--Bongard, Keny Chatain, Cécile Crimon,

Megan Dailey, Pablo Diego, Émile Enguehard, Diego Feinmann, Carlo Geraci, Maria Giavazzi,

Michael Goodale, Nicolas Guerin, Janek Guerrini, Jeremy Kuhn, Sharon Peperkamp, Bowei Shao,

and Chloé Tahar for making ENS such a pleasant and stimulating place to work in throughout

those years.

At TAU I was equally fortunate to meet and work with talented and lovely people: Matan

Abudy, Adi Behar-Medrano, Itamar Shefi, and Imry Ziv. I especially thank Ezer Rasin who was

present in this journey from the start and showed me that it’s possible to do meaningful and

rigorous work while also being extremely nice and generous. Working with Iddo Berger was my

initiation in elegant and clean programming, and I still try to live up to his standards. My passion

for most of the topics explored in this work was born thanks to Yishay Mansour and his fantastic

4

course on computational models and complexity.

I am indebted to Danny Fox for making my fascinating visit to MIT possible and for eye-

opening discussions. During this visit I was also fortunate to meet some brilliant people who I

thank for their generous input on this work and beyond it: Bob Berwick, Martin Hackl, and Roger

Levy. I also thank Ido Benbaji, Omri Doron, Janek Guerrini, Adèle Hénot-Mortier, Pelin Kivrak,

Keely New, and Anastasia Tsilia who made my time in Cambridge pleasant.

I was fortunate to meet Dominique Sportiche for prosaic matters which led to an acquaintance

with not only an exceptionally kind person but also a very unique linguistic mind. I thank him for

multiple conversations spanning linguistics, French syntax, and life itself, and for making my first

years in Paris such a magical time.

Avner Shavit originally inspired this journey by passing on to me two passions of his: living

in Paris and doing a PhD there. He is also the funniest person I know, which helped calm my

nerves during difficult times.

Claire Daum is to thank for large parts of this thesis, for generously opening her home, known

as Bambalère, which allowed me to work surrounded by green fields and jumping deer.

I am grateful to the following furry and funny friends who helped me avoid anthropocentrism:

Boten, Putzi, Belle, Bubbs, and Schwartz.

I thank my friends Lior Bosak, Nir Neumann, and Aviaz Rand who kept me visiting Israel

despite all circumstances. Above all I thank my mom Irit and my brother Ynon, for their love

from afar during all this time. And I am grateful for a beautiful flower named Yasmine who

brightens my days and keeps me smiling.

5

Introduction

“...the function of the brain and nervous system and sense organs is in the main

eliminative and not productive. [... Its function is] to protect us from being

overwhelmed and confused by this mass of largely useless and irrelevant knowledge,

by shutting out most of what we should otherwise perceive or remember at any

moment, and leaving only that very small and special selection which is likely to be

practically useful. [...] To make biological survival possible, Mind at Large has to be

funneled through the reducing valve of the brain and nervous system. What comes

out at the other end is a measly trickle of the kind of consciousness which will help us

to stay alive on the surface of this Particular planet. To formulate and express the

contents of this reduced awareness, man has invented and endlessly elaborated those

symbol-systems and implicit philosophies which we call languages."

— Aldous Huxley, The Doors of Perception, 1954

Human learning is idiosyncratic in Nature, with learning outcomes ranging from acquisition

of language to mathematical and musical reasoning and the discovery of scientific laws. All

sufficiently complex animals learn, yet human learning seems unique with respect to the mental

representations that are used when assembling hypotheses about the world. One leading explana-

tion that cuts across such highly varied tasks postulates that human mental representations take

distinct properties such as discreteness and recursiveness.

Beyond the formal properties of learned knowledge, another open question relates to the

learning process: how might a learning system reach such results based on a restricted amount of

data. Here, one explanation that has been offered for this problem assumes a general cognitive

pressure for simplicity, which drives both generalization and accuracy. This pressure can operate

both at an intentional, conscious level (‘Occam’s razor’, for example in the scientific method) as

well at an unconscious, automatic level (e.g., during language acquisition). It is unknown whether

6

such a pressure is shared with other species.

The two elements above are necessary components of any learning system: a representational

space and an objective function. Alongside them, a learning system also needs to implement a

search algorithm – a strategy for navigating the representational space of all possible learning

outcomes, guided by the objective function. Little is still known about the implementation of any

of these three components in humans, let alone in other species. Arriving at a full specification of

all three is a hard problem that currently involves efforts across multiple fields such as cognitive

science, neuroscience, and linguistics. The task is already hard enough in humans, despite the

advantage of introspection which facilitates the question of mental representation to some extent.

Probes in other species, whose mental representations remain extremely opaque, are even harder.

The task might be easier in artificial models. The ability to freely manipulate any of the

components above (the representational space, the objective function, and the search algorithm)

makes it possible to hypothesize about their implementation elsewhere, both in isolation and as a

whole, and to compare outcomes of different configurations with human data.

In this thesis we will mainly explore the questions of the objective function and of the

representational space, using the currently most widely used model – artificial neural networks

(ANNs). Despite reaching ubiquity across many domains, ANNs still struggle on a range of

tasks that require human-level generalization. Moreover, their inner workings are opaque, and

inspecting their acquired knowledge, including the formal properties of their inner representations,

remains a difficult task. The goal of the thesis then is to shed light on these shortcomings and to

discover how one would approach fixing them in ANNs, in a way that might also be informative

of human cognition.

Chapter 1 is a proposal of a new type of recurrent neural networks (RNNs), in which stan-

dard training objective functions are replaced/complemented with an objective to minimize the

Minimum Description Length (MDL) of the network itself. Applying this principle, one obtains

much smaller RNNs, by design, and also RNNs which can learn, in full generality, some formal

languages that were outside the reach of standard ANNs.

Chapters 2 and 3 then suggest that a shift in objective function might be required in order to

7

reach human-level generalization in ANNs. In Chapter 2 we propose a systematic way to inspect

the generalization capabilities of artificial models using formal languages. We release several

benchmarking datasets that unify and standardize previous ambiguous and inconclusive results

in the literature. The performance of existing ANNs, even ones equipped with more expressive

architectures, is shown to underperform compared to the MDL model from Chapter 1. In Chapter

3 we manually build a network which perfectly captures the language anbn, and show that it does

not lie at optima of standard objectives. Instead, this perfect network does lie at an optimum point

in terms of an MDL objective.

In Chapter 4 we set aside the question of the training objective and probe the linguistic

knowledge acquired by large language models (LLMs). Here we do this from the perspective

of the Argument From the Poverty of the Stimulus (APS) – a long-debated claim for an innate

capacity for language in humans, given the alleged scarcity of linguistic input available to a child.

We show that contrary to previous claims, LLMs struggle to acquire satisfactory knowledge of

syntactic phenomena for which humans have clear-cut judgements (Parasitic Gaps and Across-

the-Board movement). Given that modern LLMs are trained on massive amounts of data, which

go many orders of magnitude beyond the linguistic experience of humans, we conclude that these

failures support the claim that humans are endowed in specific ways that make it possible to

acquire such phenomena from much less input, i.e., supporting the APS.

Much more remains to be done. On a technical level, the MDL objective currently poses a hard

optimization problem, which leaves results limited to small-scale tasks such as formal language

learning (which as we show, are nevertheless challenging even for state-of-the-art models). More

efficient exploration of the MDL search space, in the form of better hardware or better search

algorithms, would unleash new possibilities for tasks such as natural language learning. Regarding

the representational space of ANNs, our results suggest that ANNs lack core properties which

push human learners in the direction of highly formalistic outcomes such as Parasitic Gaps and

Across-the-Board movement. Building such restrictive properties into ANNs remains a difficult

task, given ANNs’ convoluted inner workings on the one hand, and their powerful expressivity on

the other.

8

In terms of implications for cognition, human or other, our results strengthen existing proposals

that a pressure for simplicity plays an important role in learning, at least in humans; and that

human linguistic competence relies on representations with particular formal properties. Yet

much more remains to be determined, such as the interplay between the objective function and

the two other components of the learning system (representational space and search algorithm).

The different configurations of the system generate a wide range of predictions: it is possible, for

example, that a simplicity pressure is equally at work in other species, but that it operates over a

completely different representational space, currently impenetrable to us. Similarly, committing

to a certain representational space and an objective function, one could then ask what search

algorithm needs to be implemented by the brain in order to reach the unique learning outcomes

we see in humans.

9

Chapter 1

Minimum Description Length Recurrent

Neural Networks (joint with Michal Geyer,

Emmanuel Chemla, and Roni Katzir)

Nur Lan, Michal Geyer, Emmanuel Chemla, Roni Katzir; Minimum Description Length Recurrent

Neural Networks. Transactions of the Association for Computational Linguistics 2022; 10

785–799. doi: https://doi.org/10.1162/tacl_a_00489

10

https://doi.org/10.1162/tacl_a_00489

Minimum Description Length Recurrent Neural Networks

Nur Lan1,2, Michal Geyer2, Emmanuel Chemla1,3,*, Roni Katzir2,*

1Ecole Normale Supérieure
2Tel Aviv University

3EHESS, PSL University, CNRS
{nlan,chemla}@ens.fr

michalgeyer@mail.tau.ac.il
rkatzir@tauex.tau.ac.il

Abstract

We train neural networks to optimize a
Minimum Description Length score, i.e.,
to balance between the complexity of the
network and its accuracy at a task. We
show that networks optimizing this objec-
tive function master tasks involving mem-
ory challenges and go beyond context-free
languages. These learners master languages
such as anbn, anbncn, anb2n, anbmcn+m,
and they perform addition. Moreover, they
often do so with 100% accuracy. The net-
works are small, and their inner workings
are transparent. We thus provide formal
proofs that their perfect accuracy holds not
only on a given test set, but for any input se-
quence. To our knowledge, no other connec-
tionist model has been shown to capture the
underlying grammars for these languages in
full generality.

1 Introduction

A successful learning system is one that makes ap-
propriate generalizations. For example, after see-
ing the sequence 1,0,1,0,1 we might suspect that
the next element will be 0. If we then see 0, we
might be even more confident that the next input
element will be 1. Artificial neural networks have
shown impressive results across a wide range of
domains, including linguistic data, computer vi-
sion, and many more. They excel at generaliz-
ing when large training corpora and computing re-
sources are available, but they face serious chal-
lenges that become particularly clear when gen-
eralizing from small input sequences like the one
presented above.

First, they tend to overfit the learning data. To
avoid this, they require external measures to con-
trol their own tendency for memorization (such
as regularization) as well as very large training

∗Both authors contributed equally to this work.

corpora. Moreover, standard regularization tech-
niques fall short in many cases, as we show below.

Second, even when successful, they tend to pro-
duce non-categorical results. That is, they out-
put very high probabilities to target responses,
but never 100%. Adequate, human-like general-
ization, on the other hand involves having both
a probabilistic guess (which neural networks can
do) and, at least in some cases, a clear statement
of a categorical best guess (which neural networks
cannot do).

Third, these networks are often very big, and it
is generally very hard to inspect a given network
and determine what it is that it actually knows
(though see Lakretz et al., 2019 for a recent suc-
cessful attempt to probe this knowledge in the con-
text of linguistics).

Some of the challenges above arise from the
reliance of common connectionist approaches on
backpropagation as a training method, which
keeps the neural architecture itself constant
throughout the search. The chosen architecture
must therefore be large enough to capture the
given task, and it is natural to overshoot in terms of
size. Furthermore, it must allow for differentiable
operations to be applied, which prevents certain
categorical patterns from even being expressible.

In this paper, we propose to investigate a
training method which differs from common ap-
proaches in that its goal is to optimize a Minimum
Description Length objective function (MDL; Ris-
sanen, 1978). This amounts to minimizing error
as usual, while at the same time trying to mini-
mize the size of the network (a similar pressure to
a Bayesian size prior). As a result, the objective
function offers a guide to determining the size of
the network (a guide that error minimization alone
does not provide), which means that the architec-
ture itself can evolve during learning and typically
can decrease in size. One potential side effect is
that optimization cannot be done through back-

11

propagation alone. We here use a genetic algo-
rithm to search through the very large search space
of neural networks of varying sizes.

We find that MDL-optimized networks reach
adequate generalizations from very small corpora,
and they avoid overfitting. The MDL-optimized
networks are all small and transparent; in fact, we
provide proofs of accuracy that amount to infinite
and exhaustive test sets. They can also provide
deterministic outputs when relevant (expressing
pure 100% confidence). We illustrate this across a
range of tasks involving counters, stacks, and sim-
ple functions such as addition.

2 Previous work

Our primary concern in this paper is the objective
function. The idea of applying a simplicity cri-
terion to artificial neural networks dates back at
least to Hinton and Van Camp (1993), who mini-
mize the encoding length of a network’s weights
alongside its error, and to Zhang and Mühlen-
bein (1993, 1995), who use a simplicity metric
that is essentially the same as the MDL metric
that we use in the present work (and describe be-
low). Schmidhuber (1997) presents an algorithm
for discovering networks that optimize a simplic-
ity metric that is closely related to MDL. Simplic-
ity criteria have been used in a range of works
on neural networks, including recent contributions
(e.g., Ahmadizar et al., 2015 and Gaier and Ha,
2019). Outside of neural networks, MDL — and
the closely related Bayesian approach to induction
— have been used in a wide range of models of lin-
guistic phenomena, in which one is often required
to generalize from very limited data (see Horn-
ing, 1969, Berwick, 1982, Stolcke, 1994, Grün-
wald, 1996, and de Marcken, 1996, among others,
and see Rasin and Katzir, 2016 and Rasin et al.,
2021 for recent proposals to learn full phonologi-
cal grammars using MDL within two different rep-
resentational frameworks). In the domain of pro-
gram induction, Yang and Piantadosi (2022) have
recently used a Bayesian learner equipped with a
simplicity prior to learn formal languages similar
to the ones we present below.

Turning to the optimization algorithm that we
use to search for the MDL-optimal network, our
work connects with the literature on using evolu-
tionary programming to evolve neural networks.
Early work that uses genetic algorithms for var-
ious aspects of neural network optimization in-

cludes Miller et al. (1989), Montana and Davis
(1989), Whitley et al. (1990), and Zhang and Müh-
lenbein (1993, 1995). These works focus on feed-
forward architectures, but Angeline et al. (1994)
present an evolutionary algorithm that discovers
recurrent neural networks and test it on a range of
sequential tasks that are very relevant to the goals
of the current paper. Evolutionary programming
for neural networks remains an active area of re-
search (see Schmidhuber, 2015 and Gaier and Ha,
2019, among others, for relevant references).

Our paper connects also with the literature on
using recurrent neural networks for grammar in-
duction and on the interpretation of such networks
in terms of symbolic knowledge (often formal-
language theoretic objects). These challenges
were already taken up by early work on recurrent
neural networks (see Giles et al., 1990 and Elman,
1990, among others), and they remain the focus of
recent work (see, e.g., Wang et al., 2018 and Weiss
et al., 2018a). Jacobsson (2005) and Wang et al.
(2018) provide discussion and further references.

3 Learner

3.1 Objective: Minimum Description Length

Consider a hypothesis space G of possible gram-
mars, and a corpus of input data D. In our case,
G is the set of all possible network architectures
expressible using our representations, and D is
a set of input sequences. For a given G ∈ G
we may consider the ways in which we can en-
code the data D given G. The MDL principle
(Rissanen, 1978), a computable approximation of
Kolmogorov Complexity (Solomonoff, 1964; Kol-
mogorov, 1965; Chaitin, 1966), aims at the G that
minimizes |G|+ |D : G|, where |G| is the size of
G and |D : G| is the length of the shortest encod-
ing of D given G (with both components typically
measured in bits). Minimizing |G| favors small,
general grammars that often fit the data poorly.
Minimizing |D : G| favors large, overly specific
grammars that overfit the data. By minimizing the
sum, MDL aims at an intermediate level of gener-
alization: reasonably small grammars that fit the
data reasonably well.

The term |D : G| corresponds to the surprisal of
the dataD according to the probability distribution
defined byG (i.e., the negative log of the probabil-
ity assigned to targets by the network). The term
|G| depends on an encoding scheme for mapping
networks onto binary strings, described below.

12

3.2 Our networks and their encoding
The MDL learner explores a space of directed
graphs, made of an arbitrary number of units
and weighted connections between them. We de-
scribe the actual search space explored in the ex-
periments below, by explaining how these net-
works are uniquely encoded to produce an encod-
ing length |G|.
3.2.1 Example
We will consider networks such as the one rep-
resented in Fig. 1. It consists of two input units
(yellow units 1 and 2) and one output unit with a
sigmoid activation (blue unit 3). The network has
one forward connection (from unit 1 to 3) and one
recurrent connection (unit 2 to 3), represented by
a dashed arrow. Recurrent connections feed a unit
with the value of another unit at the previous time
step, and thus allow for the development of mem-
ory across the different time steps of the sequen-
tial tasks we are interested in. Here, unit 3 is fed
with input 2 from the previous step. The connec-
tion weights are w1,3 = 0.5 and w2,3 = 2. Unit
3 is also fed a bias term b3 = 1 represented by a
sourceless arrow.

1 Linearx0

2 Linearx1 2

0.5

3 SIGMOID y

1

Figure 1: Example network, encoded in Fig. 2

We will now explain how such a network is rep-
resented to measure its encoding size |G|.
3.2.2 Preliminary: encoding numbers
To ensure unique readability of a network from its
string representation we use the prefix-free encod-
ing for integers from Li and Vitányi (2008):

E(n) = 11111...1111︸ ︷︷ ︸
Unary enc. of dlog2ne

0︸︷︷︸
Separator

10101...00110︸ ︷︷ ︸
Binary enc. of n

3.2.3 Encoding a network
The encoding of a network is the concatenation of
(i) its total number of units, and (ii) the ordered
concatenation of the encoding of each of its units.

3.2.4 Units
The encoding of a unit includes its activation func-
tion, the number of its outgoing connections, the

encoding of each of its outgoing connections, and
its bias weight, if any.

3.2.5 Activation functions
Possible activation functions are: the linear acti-
vation (identity), ReLU, sigmoid, square, as well
as the floor function and the unit step function (re-
turns 0 for inputs ≤ 0 and 1 otherwise). To build
an intuitive measure of simplicity into the model’s
choice of activation functions, we add a cost to
each function, encoded as a unary string: the linear
activation has no cost; square costs 2 bits; ReLU,
sigmoid, and floor cost 4 bits; and the unit step
function costs 8 bits.

3.2.6 Connections and weights
A connection’s encoding includes its target unit
number (each connection is specified within the
description of its source unit, hence the source
needs not be encoded), its weight, and its type:
forward (0) or recurrent (1).

To simplify the representation of weights in
classical neural networks and to make it easier to
mutate them in the genetic algorithm described be-
low, we represent weights as signed fractions ±n

d ,
which are serialized into bits by concatenating the
codes for the sign (1 for +, 0 for −), the numera-
tor and the denominator. For example, the weight
wij = +2

5 would be encoded as:

1︸︷︷︸
+

E(2) = 10...10︸ ︷︷ ︸
2

E(5) = 1110...11︸ ︷︷ ︸
5︸ ︷︷ ︸

wij

3.3 Search algorithm

Our interest in this paper is the MDL objective
function and not the training method. However,
identifying the MDL-optimal network is hard: the
space of possible networks is much too big for
an exhaustive search, even in very simple cases.
We therefore need to combine the objective func-
tion with a suitable search procedure. We chose
to use a genetic algorithm (GA; Holland, 1975),
which frees us from the constraints coming from
backpropagation and is able to optimize the net-
work structure itself rather than just the weights of
a fixed architecture. For simplicity and to high-
light the utility of the MDL metric as a standalone
objective, we use a vanilla implementation of GA,
summarized in Algorithm 1.

The algorithm is initialized by creating a popu-
lation ofN random neural networks. A network is

13

11011︸ ︷︷ ︸
E(U)

00︸︷︷︸
linear

101︸︷︷︸
E(#out)

00..11︸ ︷︷ ︸
unit 3

01..01︸ ︷︷ ︸
w1,3

0︸︷︷︸
forward︸ ︷︷ ︸

Unit 1

00︸︷︷︸
linear

101︸︷︷︸
E(#out)

00..11︸ ︷︷ ︸
unit 3

01..01︸ ︷︷ ︸
w2,3

1︸︷︷︸
recurrent

︸ ︷︷ ︸
Unit 2

01︸︷︷︸
sigmoid

0︸︷︷︸
E(#out)

1111︸︷︷︸
cost(sigmoid)

11..01︸ ︷︷ ︸
bias︸ ︷︷ ︸

Unit 3︸ ︷︷ ︸
Encoded Network

Figure 2: Binary encoding of the network in Fig. 1

Algorithm 1 Genetic algorithm

function TOURNAMENTSELECTION(pop):
T ← t random networks from pop
winner ← argminMDL(T)
loser ← argmaxMDL(T)
return winner, loser

end function
population← ∅ . Population initialization
while |population| < N do:

generate a random network net
add net to population

end while
generation← 0 . Evolution loop
while generation < Gen do:

for N steps do:
parent, loser ←

TOURNAMENTSELECTION(population)
offspring ← mutate(parent)
eval(offspring) . MDL score
remove loser from population
add offspring to population

end for
generation← generation+ 1

end while
return argminMDL(population)

initialized by randomizing the following parame-
ters: activation functions, the set of forward and
recurrent connections, and the weights of each
connection. Networks start with no hidden units.
In order to avoid an initial population that contains
mostly degenerate (specifically, disconnected) net-
works, output units are forced to have at least one
incoming connection from an input unit.

The algorithm is run for Gen generations,
where each generation involves N steps of selec-
tion followed by mutation. During selection, net-
works compete for survival on to the next gener-
ation based on their fitness, i.e., their MDL score,
where lower MDL is better. A selected network

is then mutated using one of the following opera-
tions: add/remove a unit; add/remove a forward or
recurrent connection; add/remove a bias; mutate
a weight or bias by changing its numerator or de-
nominator, or flipping its sign; and change an acti-
vation function. These mutations make it possible
to grow networks and prune them when necessary,
and to potentially reach any architecture that can
be expressed using our building blocks. The mu-
tation implementations are based on Stanley and
Miikkulainen (2002).1

On top of the basic GA we use the Island
Model (Gordon and Whitley, 1993; Adamidis,
1994; Cantú-Paz, 1998) which divides a larger
population into ‘islands’ of equal size N , each
running its own GA as described above, period-
ically exchanging a fixed number of individuals
through a ‘migration‘ step. This compartmental-
ization serves to mitigate against premature con-
vergence which often occurs in large populations.
The simulation ends when all islands complete
Gen generations, and the best network from all
islands is taken as the solution.

4 Experiments

We ran tasks based on several classical formal-
language learning challenges. We use both deter-
ministic and probabilistic expectations to test the
ability of a learner to work on probabilistic and
symbolic-like predictions. In addition to show-
ing that the MDL learner performs well on test
sets, we provide proofs that it performs well on
the whole infinite language under consideration.

1A mutation step can potentially produce a network that
contains loops in its non-recurrent connections, most com-
monly after a new connection is added. In the feed-forward
phase, we detect loop-closing connections (using depth-first
search) and ignore them. This avoids circular feeding, and
at the same time creates a smoother search space, in which
architectures freely evolve, even through intermediate defec-
tive networks. Stagnant loop connections which don’t end up
evolving into beneficial structures are eventually selected out
due to the |G| term.

14

4.1 General setup and comparison RNNs

All simulations reported in this paper used the
following hyper-parameters: 250 islands, each
with population size 500 (total 125,000 networks),
25,000 generations, tournament size 2, migration
size 2, and a migration interval of 30 minutes or
1,000 generations (earliest of the two). The num-
ber of generations was chosen empirically to allow
enough time for convergence. Each task was run
three times with different random seeds.2

To compare the performance of the MDL-
optimized recurrent neural networks (MDLRNNs)
with classical models, we trained standard RNNs
on the same tasks, varying their architecture —
GRU (Cho et al., 2014), LSTM (Hochreiter and
Schmidhuber, 1997), and Elman networks (El-
man, 1990) — as well as the size of their hid-
den state vectors (2, 4, 32, 128), weight regular-
ization method (L1/L2/none), and the regulariza-
tion constant in case regularization was applied
(λ = 1.0/0.1/0.01), totaling 84 RNN configura-
tions. Each configuration was run three times with
different random seeds. These RNNs were trained
with a cross-entropy loss, which corresponds to
the |D : G| term divided by the number of charac-
ters in the data.3

Table 1 summarizes the results for both MDL-
RNNs and classical RNNs for all the tasks that will
be described below. For each task, the representa-
tive network for each model (out of all configu-
rations and random seeds) was chosen based on
performance on the test set, using MDL scores for
MDLRNNs and cross-entropy for RNNs.

It should be noted that model selection based
on test performance is at odds with the premise of
MDL: by balancing generalization and data fit dur-
ing training, MDL automatically delivers a model
which generalizes well beyond the training data;
MDL also does away with the post-hoc, trial-end-
error selection of hyper-parameters and regular-
ization techniques inherent in classical models. In
other words, MDL models can just as well be se-

2All experimental material and the source code for
the model are available at https://github.com/
taucompling/mdlrnn.

3All RNNs were trained using the Adam optimizer
(Kingma and Ba, 2015) with learning rate 0.001, β1 = 0.9,
and β2 = 0.999. The networks were trained by feeding
the full batch of training data for 1,000 epochs. The cross-
entropy loss for RNNs is calculated using the natural loga-
rithm, converted in Table 1 to base 2 for comparison with
MDL scores.

lected based on training performance. This is in
contrast to standard RNNs, for which the training-
best model is often the one that simply overfits the
data the most. We show that even when given post-
hoc advantage, RNNs still underperform.4,5

4.2 General measures

We will report on two measures: (i) Accuracy,
which we explain below based on each task’s
unique properties; (ii) Cross-entropy, averaged
by character for better comparability across set
sizes, and compared with a baseline value cal-
culated from the probability distribution underly-
ing each task. Most originally, in some occasions
we report on these measures on whole, infinite
languages. This is possible because, by design,
MDL-optimized networks are just large enough
for their task, allowing us to fully understand their
inner workings.

4.3 Experiment I: counters and functions

We test our model’s ability to learn formal lan-
guages that require the use of one or multiple
counters: anbn, anbncn, anbncndn. These lan-
guages can be recognized using unbounded count-
ing mechanisms keeping track of the number n
of a’s and balance the other characters accord-
ingly. We also test our model’s ability to learn lan-
guages which not only encode integers as above,
but also operate over them: anbmcn+m (addition)
and anb2n (multiplication by two). We did not
test general multiplication through the language
anbmcnm for practical reasons, namely that the
length of the sequences quickly explodes.

4.3.1 Language modeling
The learner is fed with the elements from a se-
quence, one input after the next, and at each time

4When models are selected based on training performance
(and then evaluated on the test sets), MDLRNNs outperform
standard RNNs in all tasks in terms of cross-entropy and ac-
curacy. We make the full training-based comparison available
as part of the experimental material.

5Training-based selection yields different MDLRNN win-
ners for three out of the seven relevant tasks when trained on
the smaller data sets, and for two tasks when trained on the
larger sets. However, only one of these cases, for anbncn

with the larger training set, results in a drop from 100% ac-
curacy when selected by test to a suboptimum (97.6%), while
other models remain at the same accuracy levels. MDL op-
timization is thus not immune to overfitting, which could oc-
cur for example due to accidental bad sampling. However, as
made visible by our results, MDL training produces models
that generalize well across data sets.

15

Training Test cross-entropy (×10−2) Test accuracy (%) Best RNN MDLRNN
set size MDLRNN RNN optimal MDLRNN RNN Type Size proof

anbn
100 29.4 53.2 25.8 100.0 99.8 Elman 2

Th. 4.1
500 25.8 51.0 25.8 100.0 99.8 Elman 2

anbncn
100 49.3 62.6 17.2 96.5 99.8 Elman 4

Th. 4.2
500 17.2 55.4 17.2 100.0 99.8 Elman 4

anbncndn
100 65.3 68.1 12.9 68.6 99.8 GRU 4
500 13.5 63.6 12.9 99.9 99.8 GRU 4

anb2n
100 17.2 38.0 17.2 100.0 99.9 Elman 4

Th. 4.3
500 17.2 34.7 17.2 100.0 99.9 GRU 4

anbmcn+m
100 39.8 47.6 26.9 98.9 98.9 Elman + L1 128

Th. 4.4
500 26.8 45.1 26.9 100.0 98.9 Elman 128

Dyck-1
100 110.7 94.5 88.2 69.9 10.9 Elman 4

Th. 4.5
500 88.7 93.0 88.2 100.0 10.8 LSTM 4

Dyck-2 20,000 1.19 1.19 1.18 99.3 89.0 GRU 128

Addition
100 0.0 75.8 0.0 100.0 74.9 Elman 4

Th. 4.6
400 0.0 72.1 0.0 100.0 79.4 Elman 4

Table 1: Performance of the networks found by the MDL model compared with classical RNNs for the
tasks in this paper. Test accuracy indicates deterministic accuracy, the accuracy restricted to deterministic
steps; Dyck-n tasks have no deterministic steps, hence here we report categorical accuracy, defined as
the fraction of steps where a network assigns a probability lower than ε = 0.005 to each of the illegal
symbols. When available, the last column refers to an infinite accuracy theorem for MDL networks:
describing their behavior not only for a finite test set but over the relevant, infinite language.

step its task is to output a probability distribu-
tion for the next character. Following Gers and
Schmidhuber (2001), each string starts with the
symbol #, and the same symbol serves as the tar-
get prediction for the last character in each string.

If the vocabulary contains n letters, the inputs
and outputs are one-hot encoded over n input units
(in yellow in the figures), and the outputs are given
in n units (in blue). To interpret these n outputs as
a probability distribution we zero negative values
and normalize the rest to sum to 1. In case of a
degenerate network that outputs all 0’s, the proba-
bilities are set to the uniform value 1/n.

4.3.2 Setup
Each task was run with data set sizes of 100 and
500. The training sets were generated by sampling
positive values for n (and m, when relevant) from
a geometric distribution with p = .3. The maximal
values K observed for n and m in our batches of
size 100 and 500 were 14 and 22, respectively.

We test the resulting networks on all unseen se-
quences for n in [K+1,K+1001]. For anbmcn+m

we test on n and m in [K + 1,K + 51], i.e., the
subsequent 2,500 unseen pairs.

Only parts of the sequences that belong to the
formal languages presented here can be predicted
deterministically, e.g., for anbn, the deterministic
parts are the first a (assuming n > 0), all b’s ex-

cept the first one, and the end-of-sequence sym-
bol. For each of the tasks in this section, then, we
report a metric of deterministic accuracy, calcu-
lated as the number of matches between the output
symbol predicted with maximum probability and
the ground truth, relative to the number of steps in
the data that can be predicted deterministically.

4.3.3 Results
The performance of the resulting networks is pre-
sented in Table 1. In Figures 3-6, we show the
networks that were found and their typical behav-
ior on language sequences. Thanks to their low
number of units and connections, we are able to
provide simple walkthroughs of how each network
operates. We report the following measures:

Deterministic accuracy: perfect for almost all
tasks, both with small and large training sets.
The MDL learner achieves perfect accuracy for
the tasks anbn and anb2n, both with small and
large training sets. The learner also achieves per-
fect accuracy for anbncn and anbmcn+m with a
larger training set, and in fact the networks found
there would be better optima also for the respec-
tive smaller training sets, therefore showing that
the suboptimal results for the small training sets
are only due to a limitation of the search, and that
perfect accuracy should in principle be reachable
there too with a more robust search.

16

The only task for which MDLRNNs did not
reach 100% accuracy is anbncndn. Since the other
tasks show that our representations make it possi-
ble to evolve counters, we attribute this failure to
the search component, assuming a larger popula-
tion or more generations are needed, rather than
lack of expressive power; networks for this task re-
quire more units for inputs and outputs, which en-
large the number of possible mutations the search
can apply at each step.

Cross-entropy: near perfect. For all tasks but
anbncndn, the MDLRNN per-character average
cross-entropy is also almost perfect with respect
to the optimal cross-entropy calculated from the
underlying probability distribution.

RNNs: no perfect generalization. Among the
competing models, no standard RNN reached
100% deterministic accuracy on the test sets,
and all RNNs reached suboptimal cross-entropy
scores, indicating that they failed to induce the
grammars and probability distributions underlying
the tasks. In terms of architecture size, the best-
performing RNNs are often those with fewer units,
while L1 and L2 regularizations do not yield win-
ning models except for one task.

Transparency supports formal proofs that re-
sults are perfect for the whole, infinite lan-
guage. For all tasks but anbncndn then, de-
terministic accuracy and cross-entropy are per-
fect/excellent on training and test sets. Because
the MDL networks are small and transparent, we
can go beyond these results and demonstrate for-
mally that the task is performed perfectly on the
entire infinite underlying language. To our knowl-
edge, such results have never been provided for
any classic neural network in these tasks or any
other.

Theorem 4.1. The anbn network represented in
Fig. 3 outputs the correct probability for each
character, for each sequence in the anbn language,
with a margin of error below 10−6.

Proof. Table 2 traces the value of each unit at each
step in a legal sequence for the relevant network.
When normalizing the outputs to obtain probabil-
ities, the values obtained are the exact ground-
truth values, up to the contribution of σ(−15) to
that normalization (sigmoid is abbreviated as σ),
which is negligible compared to all other positive
values (the largest deviance is σ(−15)

1+σ(−15) ≈ 3.10−7,

1 Lineara

2 Linearb

0 Linear#

6 ReLU 1

1

-1

3 Sigmoid P(#)
-15

2 -3

5 Step P(b)

4 Linear P(a)
2.33

Figure 3: The network found by the MDL learner
for the anbn task, for a training set with data set
size 500. See Theorem 4.1 for a description of
how this network accepts any anbn sequence and
why it rejects any other sequence.

anbn Unit 6 Unit 4 Unit 5 Unit 3
P (a) P (b) P (#)

Initial # 0 7/3 0 σ(−15)

∼1 ∼0 ∼0

kth a k 7/3 1 σ(−15)

∼ .7 ∼ .3 ∼0

kth b, n−k -2/3 1 σ(−15)

k < n 0 ∼1 ∼0

nth b 0 -2/3 0 σ(−15)

0 0 1

Table 2: Unit values (columns) during each phase
of a valid anbn sequence (rows). The second line
for output units, given in bold, indicates the final
normalized probability.

observed during the b’s). The network not only ac-
cepts valid anbn sequences, but also rejects other
sequences, visible by the zero probability it as-
signs to irrelevant outputs at each phase in Table 2.

More informally, the network uses a single hid-
den unit (6) as a counter, recognizable from the
recurrent loop onto itself. The counter is incre-
mented by 1 for each a (+2 from unit 1, -1 from
the bias), and then decremented by 1 for each b
(signaled by a lack of a, which leaves only the -1
bias as input to the counter).

Theorem 4.2. The network represented in Fig. 4
outputs the correct probability for each character,
for each sequence in the anbncn language, with a
margin of error below 10−6.

Proof. The proof is again obtained by tracing the
values each unit holds at each phase of a valid se-
quence in the language, see Table 3.

The network uses two hidden units that serve
as counters for the number of a’s (unit 8) and c’s
(unit 9). Each occurrence of a simultaneously
feeds the output unit for a (5) and the a counter
(8) connected to the b output (6), using weights

17

5 Linear

9 LINEAR

8 LINEAR

-0.33

1

1

-2

-1

1

2.33

1

1

1 Lineara

2 Linearb

3 Linearc

P(a)

6 Step P(b)

7 Sigmoid P(c)

0 Linear# 4 LINEAR P(#)

1

1

-15

1

Figure 4: The network found for the anbncn task
for the larger training set. See Theorem 4.2 for a
description of how this network accepts only se-
quences of the language anbncn.

anbncn Unit 8 Unit 9 Unit 4 Unit 5 Unit 6 Unit 7
P (#) P (a) P (b) P (c)

Initial # 1 − 1
3

− 1
3

1 0 σ(−15)
0 ∼1 0 ∼0

kth a 1− k − k+1
3

− k+1
3

7
3

1 σ(−15)
∼0 ∼ .7 ∼ .3 ∼0

kth b k+1−n − k+n+1
3
− k+n+1

3
0 1 σ(−15)

k < n 0 0 ∼1 ∼0

nth b 1 − 2n+1
3

− 2n+1
3

0 0 σ(−15)
0 0 0 1

kth c 1+k 2k−2n−1
3

2(k+1−n)
3

0 0 σ(−15)
k < n 0 0 0 1

nth c 1+n − 1
3

2
3

0 0 σ(−15)
∼1 0 0 ∼0

Table 3: Unit values (columns) during each phase
of a valid anbncn sequence (rows).

to create the correct probability distribution be-
tween a’s and b’s. Once a’s stop, P (a) flatlines,
and the a counter (8) starts decreasing until n b’s
are seen. Another counting system has evolved in
unit 9 which counts the number of a’s and b’s (sig-
naled by lack of c’s), and then decreases for each
c, finally triggering the end-of-sequence output #.
Note how the model avoids holding a third counter
for the number of b’s, by reusing the a counter.
This makes it possible to disconnect the b input
unit (2), which minimizes encoding length.

Theorem 4.3. The anb2n network represented in
Fig. 5 outputs the correct probability for each
character, for each sequence in the anb2n lan-
guage, with a margin of error below 10−6.

Proof. The network is similar to the one found for
anbn (Fig. 3). The proof that this network is ac-
curate is also similar (Theorem 4.1), the only dif-
ference being that the hidden unit is incremented
with 2 instead of 1 for each a input.

1 Lineara

2 Linearb

0 Linear#

6 ReLU 1

1

-1

2.33

3 Sigmoid P(#)
-15

3 -3

5 Step P(b)

4 Linear P(a)

Figure 5: The network found for the anb2n task
for the larger training set. See Theorem 4.3 for a
description of how this network accepts only se-
quences of the language anb2n.

Theorem 4.4. The network represented in Fig. 6
outputs the correct probability for each charac-
ter, for each sequence in the anbmcn+m language,
with a margin of error below .2 (and below 10−4

for deterministic steps, i.e., probabilities 0 or 1).6

0.5

31
-11

-7-1

0.2

-1

7

-4

1

5 SQUARE

8 LINEAR

1 Lineara

2 Linearb

3 Linearc

P(a)

6 SQUARE P(b)

7 Sigmoid P(c)

0 Linear# 4 LINEAR P(#)

Figure 6: The network found for the anbmcn+m

task for the larger training set. See Theorem 4.4
for a description of how this network accepts only
sequences of the language anbmcn+m.

Proof. In Table 4 we trace the values of each unit
during feeding of a valid sequence in anbmcn+m.
We do not represent the internal memory unit 8, its
value is the seventh of that of unit 4.

Here, a network with a single counter (unit 8)
has evolved which recognizes the language with
100% accuracy. While one would think that this
task requires at least two counters — for n and m
— the pressure for parsimony leads the model to
evolve a more compact solution: since the num-
ber of c’s is always n +m, and no other symbols

6For this task, the average test cross-entropy per charac-
ter of the network trained on the larger data set goes slightly
below the optimum (see Table 1); this can happen for exam-
ple if the model picks up on unintentional regularities in the
training set that are also present in the test set.

18

anbmcn+m unit 5 unit 6 unit 7 unit 4
P (a) P (b) P (c) P (#)

Initial # 312 0 σ(−4) 7
2∼ .996 0 ∼0 ∼ .004

kth a 112 72 σ(−4) 7
2
(1− k)

∼ .71 ∼ .29 ∼0 0

kth b 0 .04 σ(−4) 7
2
(1−n−k)

0 ∼ .69 ∼ .31 0

kth c 0 0 σ(−4) 7
2
(1−n−m+k)

k < m+ n 0 0 1 0

(m+ n)th c 0 0 σ(−4) 7
2

0 0 ∼0 ∼1

Table 4: Unit values during each phase of a valid
anbmcn+m sequence.

appear between the first and last #, the network
uses the signal of lack of c’s as an indication of
positive occurrences of either a or b. This might
raise a suspicion that the network recognizes out-
of-language sequences such as balanced yet un-
ordered strings, e.g. abbaaccccc. In practice, how-
ever, the network imposes a strict order: a receives
a positive probability only after # or a; b only af-
ter a or b; and c receives a significant proportion
of the probability mass only as a last resort.

4.4 Experiment II: Dyck-1 vs. Dyck-2

In previous tasks, we showed the capability of
MDLRNNs to evolve counters. A counter is also
what is needed to recognize the Dyck-1 language
of well-matched parentheses sequences. In the
Dyck-2 language, however, there are two pairs of
opening and closing characters, such as parenthe-
ses and brackets. Counters are not sufficient then,
and a stack is needed to additionally track whether
the next closing element must be a parenthesis or
a bracket (and similarly for any Dyck-n language
for n > 1, Suzgun et al., 2019). We ask here
whether MDL-optimized networks can evolve not
only counters but also stacks.

4.4.1 Setup
The setup is that of a language modeling task,
as in Experiment I. For Dyck-1, the training se-
quences were generated from a PCFG with prob-
ability p = .3 of opening a new bracket, with
data set sizes 100 and 500. The test sets contained
50,000 sequences generated from the same gram-
mar that were not seen during training.

For Dyck-2, a fully operational stack is needed
in order to recognize the language. We thus first
make sure that such a network exists in the search
space. We do this by manually designing a net-
work that implements a fully operational stack.

We use this network as a baseline for comparison
with the results of the MDL simulations.

The stack network and a detailed description of
its mechanism are given in Fig. 8. We add two
additional building blocks in order to implement
this mechanism: the modulo 3 activation func-
tion used in the ‘pop’ implementation, and a sec-
ond type of unit which applies multiplication to its
inputs, in order to create gates such as the ones
used in LSTM networks. Because the inclusion
of these new representations enlarges the search
space, and because the baseline network is larger
in terms of number of units than the networks
found in previous tasks (23 vs. 7-10), we dou-
ble the genetic algorithm’s overall population size
(500 islands vs. 250), allowing more hypotheses
to be explored. We also enlarge the training set
to 20,000 samples, which allows networks with
costlier |G| terms to evolve. Here again the train-
ing sequences were generated from a PCFG with
probability p = .3 for opening a new bracket or
parenthesis, and tested on 50,000 novel sequences
generated from the same grammar.

Dyck sequences don’t have any sub-parts which
can be predicted deterministically (one can always
open a new bracket), which makes deterministic
accuracy reported above irrelevant. We report in-
stead a metric we call categorical accuracy, de-
fined as the fraction of steps where the network
predicts probability p ≥ ε for symbols that could
appear at the next step, and p < ε for irrelevant
symbols. For example, for Dyck-2, when the up-
coming closing character is a bracket (i.e., the last
seen opening character was a bracket), the network
should assign probability 0 to the closing paren-
thesis; and similarly for the end-of-sequence sym-
bol as long as a sequence is unbalanced. Because
classical RNNs cannot assign categorical 0 proba-
bilities to outputs due to their reliance on softmax
layers, we use ε = 0.005 as a categorical margin.

4.4.2 Results
Full performance details are given in Table 1.

For the Dyck-1 language, the networks for the
small and large training sets reach average test
cross-entropy of 1.11 and 0.89 respectively, com-
pared to an optimal 0.88. This result is in line with
those of Experiment I, where we have shown that
our representations are capable of evolving coun-
ters, which are sufficient for recognizing Dyck-1
as well. An Elman RNN reaches a better cross-
entropy score, but worse categorical accuracy, for

19

the smaller training set, while MDLRNN wins
with the larger set, reaching a score close to the
optimum and 100% categorical accuracy.

Theorem 4.5. When brackets are well balanced,
the Dyck-1 network in Fig. 7 correctly predicts
that no closing bracket can follow by assigning it
probability 0. Conversely, when brackets are un-
balanced, it assigns probability 0 to the end-of-
sequence symbol.

1 Linear[

2 Linear]

0 Linear#

6 LINEAR -0.33

1

1

3 LINEAR P(#)

-2

5 FLOOR P(])

4 SIGMOID P([)

1

1

Figure 7: The network found by the MDL learner
for the Dyck-1 task for the larger training set. See
Theorem 4.5 for a description of how it accepts
only valid Dyck-1 sequences.

Dyck-1 Unit 6 Unit 4 Unit 5 Unit 3
P ([) P (]) P (#)

o > 0 1− o 1/2 floor(2+o
3

) 1− o
∼ 3

7+2o
∼ 4+2o

7+2o
0

o = 0 1 1/2 floor(2
3
) = 0 1

1/3 0 2/3

Table 5: Unit values and output probabilities dur-
ing the two possible phases of a Dyck-1 sequence:
(i) the number of open brackets o is positive, or (ii)
all brackets are well balanced (o = 0).

Proof. Call o the number of open brackets in a
prefix. Throughout a Dyck-1 sequence, unit 6
holds the value 1 − o: it holds the value 1 after
the initial ‘#’; then +1 is added for each ‘[’, and
−1 for each ‘]’. The output probabilities in the
cases of balanced and unbalanced sequences are
then given in Table 5. The theorem follows from
the fact that P (#) = 0 if o > 0, and P (]) = 0 if
o = 0. In the target language, we note that opening
brackets have a constant probability of P ([) = .3,
while in the found network this probability de-
creases with o (visible in unit 4’s output probabil-
ity, Table 5). This makes a potential difference for
high values of o, which however are very rare (o
decreases with probability .7 at all time steps).

For Dyck-2, the MDL model fails to reach the
architecture of the baseline manual network, or
another architecture with a similar cross-entropy
score, reaching a network which has a worse MDL
score than the baseline (148,497 vs. 147,804).
Accordingly, MDLRNN reaches a non-perfect
99.27% categorical accuracy, compared to 89.01%
for RNNs, which reflects both models’ failure to
correctly balance certain sequences. Both models
tie at 1.19 cross-entropy, close to the optimal 1.18.

Since we confirmed that the baseline architec-
ture exists in the search space, we conclude that
reaching a fully operational stack network is hin-
dered by the non-exhaustive search procedure,
rather than by the MDL metric. This may be solv-
able by tweaking the hyper-parameters or putting
more computational resources into the search. It
could be, however, that this difficulty is due to
a more interesting property of the task at hand.
It has been claimed that evolutionary algorithms
tend to struggle with so-called ‘deceptive’ opti-
mization problems — tasks for which series of in-
termediate good solutions don’t necessarily lead
to a global optimum (see overview in Lehman and
Stanley, 2011). For the stack network, it could be
the case that a stack is only operational in its full
form, and that intermediate networks deceive and
lead the search to local minima, like the one found
in the current simulation.

A recent line of work has addressed the need
for stacks by manually designing stack-like mech-
anisms using continuous representations, and in-
tegrating them manually into standard architec-
tures (Graves et al., 2014, Joulin and Mikolov,
2015, Suzgun et al., 2019, among others). In-
deed, when they are explicitly augmented with
manually-designed continuous stack emulators,
neural networks seem to be able to capture non-
regular grammars such as the one underlying the
Dyck-2 language. Similarly, we could allow our
search to add stacks in one evolution step. This
could overcome the risk of a deceptive search tar-
get mentioned above. If successful, we can expect
this approach to come with all the benefits of the
MDL approach: the winning network would re-
main small and transparent, and it would eventu-
ally contain a memory stack only if this is intrinsi-
cally needed for the task.

20

1 1

1
3

1

1

1

0.33

-1

2

1

1

1

1

1 Linear(

2 Linear)

3 Linear[

4 Linear]

0 Linear#

10 linear 11 linear 12 Linear

“push” circuit

“pop” circuit

MEMORY

13 linear

17 FLOOR 18 MOD3 20 STEP

19 STEP

21 linear

22 linear

1

1

1
1

-1

1

1

1

1

1

1

-1

-1

1p/2(1-P)

-1

15 linear14 linear

6 Linear P(()

7 linear P())

8 linear P([)

9 linear P(])

5 LINEAR P(#)

16 Linear

Figure 8: A manually-designed network implementing a fully operational stack, which recognizes the
Dyck-2 language. The network uses an additional type of unit, which calculates the product of its inputs
instead of summing them, making it possible to create gate units similar to those of LSTM networks (gray
striped units in the figure). The stack’s memory is implemented as an integer, stored here in unit 13; the
integer is shifted to the left or right in base 3, making it possible to store the value 2 for a parenthesis
and 1 for a bracket, visible in their respective input weights. Unit 12 is the ‘push’ gate, which opens
when a non-zero value flows from the opening bracket or parenthesis inputs. Unit 16 is the ‘pop’ gate,
opened by a non-zero input from a closing symbol. The recurrent connection from memory unit 13 to
unit 11 performs the base-3 left shift by multiplying the memory by 3. For ‘pop’, a right shift is applied
by dividing the memory by 3. To extract the value of the topmost element, modulo 3 is applied. The bias
for unit 22 handles outputting the probability p of opening a new bracket/parenthesis.

4.5 Experiment III: general addition

In the previous experiments, we saw that MDL-
optimized networks are capable of representing
integers and add them in what amounts to unary
representation (see anbmcn+m language). Here,
we show that addition can be performed when the
numbers and outputs are represented in a differ-
ent format. Specifically, we consider the familiar
task of adding two integers in binary representa-
tion when the numbers are fed bit-by-bit in paral-
lel, starting from the least significant bit. While
this problem has good approximate solutions in
terms of standard RNNs,7 we will show that our
model provides an exact solution. As far as we are
aware, this has not been shown before.

4.5.1 Setup
In this setting, we diverge from a language mod-
eling task. The network here is fed at each time
step i with a tuple of binary digits, representing
the digits ni and mi of two binary numbers n and
m, starting from the least significant bit. The two
input units are assigned the values ni and mi. The

7An example implementation that reportedly works up
to a certain number of bits: https://github.com/
mineshmathew/pyTorch_RNN_Examples

output is interpreted as the predicted probability
that (n + m)i = 1, that is that 1 is the ith digit
in the sum (n +m). Output values are capped to
make them probabilities: values at or below 0 are
interpreted as probability 0, values at or above 1
are interpreted as probability 1.

The model was trained on two corpus sizes: one
that contained all pairs of integers up to K = 10
(total 100 samples), and a larger set of all pairs up
to K = 20 (total 400). The resulting networks
were then tested on the set of all pairs of integers
n,m ∈ [K + 1,K + 251], i.e., 62,500 pairs not
seen during training. Since the task is fully deter-
ministic, we report a standard accuracy score.

4.5.2 Results
MDLRNNs reached 100% accuracy on both test
sets, and an optimal cross-entropy score of zero.
Fig. 9 shows the MDLRNN result for the larger
training set. It provably does perfect addition, with
perfect confidence, for all pairs of integers:

Theorem 4.6. For the net in Fig. 9, the output unit
at time step i is the ith digit of the sum of the inputs.

Proof. Call c3i−1 the value of unit 3 at time step
i− 1; this value is the carry-over for the next time

21

step, feeding unit 4 through their recurrent con-
nection at time step i. This can be proven in two
steps. (1) At the first time step i = 1 the carry-over
going into unit 4 is 0, since recurrent inputs are 0
by default at the first time step. (2) By induction,
c4i is the sum of the relevant carry-over (c3i−1) and
the two input digits at time i. The combination of
the 1/2 multiplication and floor operation extracts
a correct carry-over value from that sum and stores
it in unit 3. From there, we see that c2i holds the
correct binary digit: the sum of current inputs and
carry-over (from c4i), minus the part to be carried
over next (from −2× c3i).

0 Linearni

1 Linearmi

3 FLOOR

4 LINEAR 1

-2

0.51 1

1

2 LINEAR P(1)

Figure 9: The network found by the MDL learner
for the binary addition task, trained on all 400
pairs of numbers up to 20. This network is cor-
rect for all numbers (Theorem 4.6).

.

Again, the task is learned perfectly and in a
readable fashion. As a side remark, the network
obtained here can also naturally be extended to
perform addition of more than 2 numbers, sim-
ply by adding the necessary inputs for the addi-
tional digits and connecting them to cell 4. To our
knowledge no other RNN has been proven to hold
a carry-over in memory for an unbounded num-
ber of digits, i.e. to perform general addition of
any arbitrary pair of numbers. The best compet-
ing classical RNNs trained here were never able to
reach more than 79.4% accuracy on the test sets,
indicating that they learned a non-general way to
do addition.

4.6 Objective function probe

In order to further probe the value of the MDL
objective function — and to isolate the effects of
the objective function, which is our main focus,
from those of the training method and the activa-
tion functions — we ran four additional simula-
tions using variations of MDL while keeping the
setting without change. The variants of the objec-
tive function that we tested are: (i) |G| alone, i.e.,
only the description length of the network is mini-
mized; (ii) |D : G| alone, i.e., the model only opti-

mizes training data fit, similarly to a cross-entropy
loss in traditional models; (iii)-(iv) replacing |G|
with traditional L1 and L2 regularization terms.

The different objective functions were tested on
the anbn task using the same hyper-parameters
given in Sec. 4.1. Table 6 summarizes the perfor-
mance for each resulting network. As expected,
when |G| alone is minimized, the result is a de-
generate network with no hidden units or connec-
tions. Conversely, |D : G|-only training results in
a network growing large and picking up on acci-
dental regularities in the training set. The overfit-
ting leads to below-optimal cross-entropy on the
training set. Test cross-entropy is infinite because
the model assigns a categorical zero probability to
some possible targets. Both L1 and L2 regular-
izations indirectly constrain the encoding length
of the resulting networks and have the advantage
of being compatible with backpropagation search.
However, these constraints are not as effective as
pure MDL in avoiding overfitting (cross-entropy
is below optimal on the training set and above on
the test set).

Objective CE (×10−2) Size
function train test units conn
|G| 158.5 158.5 0 0
|D : G| 37.3 ∞ 126 299
|D : G|+ L1 37.6 55.3 6 23
|D : G|+ L2 37.5 ∞ 6 33
|D : G|+ |G| (MDL) 38.1 25.8 1 7

Table 6: Cross-entropy and number of units and
connections on the anbn task using different ob-
jective functions; MDL yields ground-truth opti-
mal CE for both training and test.

5 Conclusion

Classical RNNs optimized for accuracy can par-
tially recognize nonregular languages and gener-
alize beyond the data up to a certain n (Gers and
Schmidhuber, 2001; Weiss et al., 2018b). How-
ever large this n may be, the failure of these net-
works to fully generalize to arbitrary values of n
reveals that they fail to lock in on the correct gram-
mars that underlie these tasks.

We found that an MDL-optimized learner ar-
rives at networks that are reliably close to the true
distribution with small training corpora, for classi-
cally challenging tasks. In several cases, the net-
works achieved perfect scores. Beyond the usual
evaluation in terms of performance on test sets, the

22

networks lent themselves to direct inspection and
showed an explicit statement of the pattern that
generated the corpus.

Acknowledgements

We wish to thank Matan Abudy, Moysh
Bar-Lev, Artyom Barmazel, Marco Baroni,
Adi Behar-Medrano, Maxime Cauté, Rahma
Chaabouni, Emmanuel Dupoux, Nicolas Guérin,
Jean-Rémy King, Yair Lakretz, Tal Linzen, Aël
Quelennec, Ezer Rasin, Mathias Sablé-Meyer,
Benjamin Spector; the audiences at CNRS/ENS
Paris, Facebook AI Paris, NeuroSpin, Tel Aviv
University, and ZAS Berlin; and Nitzan Ron for
creating the figures in this paper. We also thank
the action editors at TACL and three anonymous
reviewers for their helpful comments.

This work was granted access to the HPC/AI
resources of IDRIS under the allocation 2021-
A0100312378 made by GENCI.

References

Panagiotis Adamidis. 1994. Review of parallel ge-
netic algorithms bibliography. Aristotle Univ.
Thessaloniki, Thessaloniki, Greece, Tech. Rep.

Fardin Ahmadizar, Khabat Soltanian, Fardin
AkhlaghianTab, and Ioannis Tsoulos. 2015. Ar-
tificial neural network development by means
of a novel combination of grammatical evolu-
tion and genetic algorithm. Engineering Appli-
cations of Artificial Intelligence, 39:1–13.

P.J. Angeline, G.M. Saunders, and J.B. Pollack.
1994. An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Trans-
actions on Neural Networks, 5(1):54–65.

Robert C. Berwick. 1982. Locality Principles and
the Acquisition of Syntactic Knowledge. Ph.D.
thesis, MIT, Cambridge, MA.

Erick Cantú-Paz. 1998. A survey of parallel ge-
netic algorithms. Calculateurs paralleles, re-
seaux et systems repartis, 10(2):141–171.

Gregory J. Chaitin. 1966. On the length of pro-
grams for computing finite binary sequences.
Journal of the ACM, 13:547–569.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014.
Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Trans-
lation. arXiv:1406.1078 [cs, stat].

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Adam Gaier and David Ha. 2019. Weight agnostic
neural networks. CoRR, abs/1906.04358.

Felix Gers and Jürgen Schmidhuber. 2001. LSTM
recurrent networks learn simple context-free
and context-sensitive languages. IEEE Trans-
actions on Neural Networks, 12(6):1333–1340.
Conference Name: IEEE Transactions on Neu-
ral Networks.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen,
Yee-Chun Lee, and Dong Chen. 1990. Higher
order recurrent networks and grammatical in-
ference. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems 2,
pages 380–387. Morgan-Kaufmann.

V Scott Gordon and Darrell Whitley. 1993. Se-
rial and parallel genetic algorithms as function
optimizers. In ICGA, pages 177–183.

Alex Graves, Greg Wayne, and Ivo Dani-
helka. 2014. Neural Turing Machines.
arXiv:1410.5401 [cs]. ArXiv: 1410.5401.

Peter Grünwald. 1996. A minimum description
length approach to grammar inference. In Ste-
fan Wermter, Ellen Riloff, and Gabriele Scheler,
editors, Connectionist, Statistical and Symbolic
Approaches to Learning for Natural Language
Processing, Springer Lecture Notes in Artificial
Intelligence, pages 203–216. Springer.

Geoffrey E. Hinton and Drew Van Camp. 1993.
Keeping the neural networks simple by mini-
mizing the description length of the weights. In
Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780. Publisher: MIT Press.

John H Holland. 1975. Adaptation in natural and
artificial systems. an introductory analysis with
application to biology, control, and artificial in-
telligence. Ann Arbor, MI: University of Michi-
gan Press, pages 439–444.

23

James Horning. 1969. A Study of Grammatical
Inference. Ph.D. thesis, Stanford.

Henrik Jacobsson. 2005. Rule extraction from re-
current neural networks: A taxonomy and re-
view. Neural Computation, 17(6):1223–1263.

Armand Joulin and Tomas Mikolov. 2015.
Inferring Algorithmic Patterns with Stack-
Augmented Recurrent Nets. In Advances in
Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A Method for Stochastic Optimization. In In-
ternational Conference of Learning Represen-
tations (ICLR).

Andrei Nikolaevic Kolmogorov. 1965. Three ap-
proaches to the quantitative definition of infor-
mation. Problems of Information Transmission
(Problemy Peredachi Informatsii), 1:1–7.

Yair Lakretz, German Kruszewski, Theo Desbor-
des, Dieuwke Hupkes, Stanislas Dehaene, and
Marco Baroni. 2019. The emergence of num-
ber and syntax units in LSTM language models.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 11–20, Minneapolis, Minnesota.
Association for Computational Linguistics.

Joel Lehman and Kenneth O. Stanley. 2011.
Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary compu-
tation, 19(2):189–223. Publisher: MIT Press.

Ming Li and Paul Vitányi. 2008. Chapter 1.4, Bi-
nary Strings. In An Introduction to Kolmogorov
Complexity and Its Applications, Texts in Com-
puter Science. Springer New York, New York,
NY.

Carl de Marcken. 1996. Unsupervised Language
Acquisition. Ph.D. thesis, MIT, Cambridge,
MA.

Geoffrey F Miller, Peter M Todd, and Shailesh U
Hegde. 1989. Designing Neural Networks us-
ing Genetic Algorithms., volume 89.

David J Montana and Lawrence Davis. 1989.
Training feedforward neural networks using ge-
netic algorithms. In IJCAI, volume 89, pages
762–767.

Ezer Rasin, Iddo Berger, Nur Lan, Itamar Shefi,
and Roni Katzir. 2021. Approaching explana-
tory adequacy in phonology using Minimum
Description Length. Journal of Language Mod-
elling, 9(1):17–66.

Ezer Rasin and Roni Katzir. 2016. On evalua-
tion metrics in Optimality Theory. Linguistic
Inquiry, 47(2):235–282.

Jorma Rissanen. 1978. Modeling by shortest data
description. Automatica, 14:465–471.

Jürgen Schmidhuber. 1997. Discovering neural
nets with low Kolmogorov complexity and high
generalization capability. Neural Networks,
10(5):857–873.

Jürgen Schmidhuber. 2015. Deep learning in neu-
ral networks: An overview. Neural Networks,
61(0):85–117.

Ray J. Solomonoff. 1964. A formal theory of in-
ductive inference, parts I and II. Information
and Control, 7(1 & 2):1–22, 224–254.

Kenneth O. Stanley and Risto Miikkulainen. 2002.
Evolving neural networks through augment-
ing topologies. Evolutionary computation,
10(2):99–127. Publisher: MIT Press.

Andreas Stolcke. 1994. Bayesian Learning of
Probabilistic Language Models. Ph.D. thesis,
University of California at Berkeley, Berkeley,
California.

Mirac Suzgun, Sebastian Gehrmann, Yonatan
Belinkov, and Stuart M. Shieber. 2019.
Memory-Augmented Recurrent Neural Net-
works Can Learn Generalized Dyck Languages.
arXiv:1911.03329 [cs].

Qinglong Wang, Kaixuan Zhang, Alexander G.
Ororbia II, Xinyu Xing, Xue Liu, and C. Lee
Giles. 2018. An empirical evaluation of rule ex-
traction from recurrent neural networks. Neural
Computation, 30(9):2568–2591.

24

Gail Weiss, Yoav Goldberg, and Eran Yahav.
2018a. Extracting automata from recurrent neu-
ral networks using queries and counterexam-
ples. In Proceedings of the 35th International
Conference on Machine Learning.

Gail Weiss, Yoav Goldberg, and Eran Yahav.
2018b. On the Practical Computational Power
of Finite Precision RNNs for Language Recog-
nition. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 740–
745.

D Whitley, T Starkweather, and C Bogart. 1990.
Genetic algorithms and neural networks: opti-
mizing connections and connectivity. Parallel
Computing, 14(3):347–361.

Yuan Yang and Steven T. Piantadosi. 2022. One
model for the learning of language. Pro-
ceedings of the National Academy of Sciences,
119(5). Publisher: National Academy of Sci-
ences Section: Social Sciences.

Byoung-Tak Zhang and Heinz Mühlenbein. 1993.
Evolving optimal neural networks using genetic
algorithms with Occam’s Razor. Complex Sys-
tems, 7(3):199–220.

Byoung-Tak Zhang and Heinz Mühlenbein. 1995.
Balancing accuracy and parsimony in genetic
programming. Evolutionary Computation,
3(1):17–38.

25

Chapter 2

Benchmarking Neural Network

Generalization for Grammar Induction

(joint with Emmanuel Chemla and Roni

Katzir)

Nur Lan, Emmanuel Chemla, and Roni Katzir. 2023. Benchmarking Neural Network Gener-

alization for Grammar Induction. In Proceedings of the 2023 CLASP Conference on Learning

with Small Data (LSD), pages 131–140, Gothenburg, Sweden. Association for Computational

Linguistics. https://aclanthology.org/2023.clasp-1.15

26

https://aclanthology.org/2023.clasp-1.15

Benchmarking Neural Network Generalization for Grammar Induction

Nur Lan1,2, Emmanuel Chemla1, Roni Katzir2

1Ecole Normale Supérieure
2Tel Aviv University

{nur.lan,emmanuel.chemla}@ens.psl.eu
rkatzir@tauex.tau.ac.il

Abstract

How well do neural networks generalize? Even
for grammar induction tasks, where the target
generalization is fully known, previous works
have left the question open, testing very lim-
ited ranges beyond the training set and using
different success criteria. We provide a mea-
sure of neural network generalization based
on fully specified formal languages. Given a
model and a formal grammar, the method as-
signs a generalization score representing how
well a model generalizes to unseen samples in
inverse relation to the amount of data it was
trained on. The benchmark includes languages
such as anbn, anbncn, anbmcn+m, and Dyck-
1 and 2. We evaluate selected architectures
using the benchmark and find that networks
trained with a Minimum Description Length
objective (MDL) generalize better and using
less data than networks trained using standard
loss functions. The benchmark is available at
https://github.com/taucompling/bliss.

1 Introduction

The extent to which artificial neural networks
(ANNs) generalize beyond their training data is an
open research question. In this work we approach
this question from the perspective of grammar in-
duction, that is, the learning of a formal grammar
from a finite (often small) sample from the (typi-
cally infinite) language of that grammar. In order to
succeed in this task, a model must strike a balance
between fitting the training data and generalizing to
a potentially infinite set of unseen strings. Humans
tested on such tasks show systematic generaliza-
tion from small sets of examples (Fitch and Hauser,
2004, Malassis et al., 2020).

While a range of ANN architectures have been
shown to reach approximations for formal lan-
guages, the quality of this approximation remains
an open matter, as we show below. Here we build
on previous probes of ANN generalization for
grammar induction and introduce a unified and

general way to assess this capability, for a given
pair of a learning model and a corpus drawn from
a formal language. Our main contributions are:

1. A benchmark for formal language learn-
ing. The benchmark relies on a method for
quantifying ANN generalization for formal
languages, including probabilistic languages.
The method assigns an index score represent-
ing a model’s generalization performance in
inverse relation to the size of the training data.
We introduce the method and provide concrete
datasets for well-studied formal languages.

2. An evaluation of selected architectures. We
test recurrent neural networks (RNNs) of
the Long-Short Term Memory type (LSTM;
Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al.,
2019b;) and an RNN variant which replaces
the traditional gradient-based training regime
with an objective that optimizes the model’s
Minimum Description Length (MDLRNN;
Lan et al., 2022).

We find that equipping ANNs with memory
devices such as differentiable stacks helps gen-
eralization, but generalization remains partial
and slow. At the same time, training with
MDL leads in some of the test cases that we
examined to potentially perfect generalization
with significantly less data. In other cases,
training with MDL did not result in successful
generalization, possibly because the optimiza-
tion procedure we used for the architecture
search failed to find the global optimum under
the MDL objective function.

2 Background

Learning formal languages has long been used to
probe various aspects of ANN performance. These
most often include inquiries about: (i) ANNs’ abil-
ity to generalize beyond their training data, and

27

Language Paper Model Metric Training size Max train n Max test n

anbn

GS’01 LSTM Mcat′ 16,000 30 1,000
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 100† 100 256
LGCK’22 MDLRNN Mdet 500 22 ∞

anbncn

GS’01 LSTM Mcat′ 51,000 40 500
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 50† 50 100
LGCK’22 MDLRNN Mdet 500 22 ∞

Dyck-1

SGBS’19a LSTM Mcat′ 10,000 50 100
SGBS’19b MARNN Mcat′ 5,000 50 100
EMW’22 ReLU-RNN Mcat′ 10,000 50 1,000
LGCK’22 MDLRNN Mcat 500 16 ∞

Table 1: ANN performance in selected probes of formal language learning. Metrics (see Section 3.5): Mdet =
deterministic accuracy; Mcat = categorical accuracy; Mcat′ = a non-probabilistic version of Mcat; Bin = binary
classification from hidden state to accept/reject labels, based on positive and negative samples. Training size: † =
the paper did not explicitly specify the training set size, the value here is derived by assuming the training set was
an exhaustive list of all strings up to ‘max train n‘. ‘Max test n’: the largest n for which the criterion was reached.
For Dyck-1, n represents overall sequence length. ‘∞’ = the paper provides evidence that the network is correct for
any n. When a paper reports several experiments as in GS’01, we take the best result based on the smallest training
set. Papers: GS’01 = Gers and Schmidhuber (2001); JM’15 = Joulin and Mikolov (2015); WGY’18 = Weiss et al.
(2018); SGBS’19a = Suzgun et al. (2019a); SGBS’19b = Suzgun et al. (2019b); EMW’22 = El-Naggar et al. (2022);
LGCK’22 = Lan et al. (2022).

(ii) ANNs’ expressive power; i.e., whether they
can represent the relevant target grammars (often
probed with reference to the Chomsky hierarchy
of formal languages, as in Delétang et al., 2022).
Here we will focus on the generalization question.
We will show how it might be related to another
under-exploited line of inquiry regarding the train-
ing objective of ANNs.

A long line of theoretical work has probed the
computational power of ANNs. Siegelmann and
Sontag (1992) originally showed that RNNs with
a sigmoid activation can emulate multiple-stack
Turing machines under certain permissive condi-
tions (infinite activation precision and unbounded
running time). Since these conditions cannot be
met in practice, another line of work probed the
computational power of RNNs under practical con-
ditions (finite precision and input-bound running
time). Weiss et al. (2018) have shown that under
these conditions LSTMs are able to hold weight
configurations that perform unbounded counting,
and so they should be able to recognize counter lan-
guages (CL), a family of formal languages that can
be recognized using one or more counting devices
(following some formal restrictions, Merrill, 2021).
Recently, El-Naggar et al. (2023a) and El-Naggar
et al. (2023b) have shown that two simpler RNN ar-

chitectures, with linear- and ReLU-based cells, are
also able to hold counting weight configurations,
with similar consequences for recognizing CL.

Empirically, another line of work provided
promising results regarding the capability of ANNs
to learn formal languages. This was most of-
ten done by training networks on strings up to
a certain length and then showing good perfor-
mance on longer ones (Bodén and Wiles, 2000,
Gers and Schmidhuber, 2001; see Table 1). Gers
and Schmidhuber (2001) have shown that LSTMs
trained on languages such as anbn and anbncn with
n values in the low dozens perform well on n’s in
the high hundreds. Suzgun et al. (2019a) found
that LSTMs trained on Dyck-1 sequences (strings
of well-balanced pairs of brackets) up to length 50
performed well on lengths up to 100. Suzgun et al.
(2019b) proposed RNN variants that are equipped
with external differentiable memory devices and
showed that they yield improved performance on
non-regular languages.

However, other empirical results show that in
practice ANNs generalize only to very restricted
ranges. Weiss et al. (2018) found that while LSTMs
are theoretically able to hold counting solutions,
these are not found through training: LSTMs
trained on anbn and anbncn with max n 100 and

28

50, respectively, start accepting illicit strings with n
values as low as 256 and 100. As mentioned above,
Suzgun et al. (2019a) tested LSTMs on Dyck-1 se-
quences but only up to length 100, and concluded
that this language was learned by LSTMs. El-
Naggar et al. (2022) extended this work to longer
sequences, and found that LSTMs fail to gener-
alize in practice, outputting incorrect predictions
at lengths under 1,000. This, despite Dyck-1 be-
ing a CL and so theoretically learnable by LSTMs
(Weiss et al., 2018).

Apart from LSTMs, recent probes by El-Naggar
et al. (2023a) and El-Naggar et al. (2023b) have
shown that linear and ReLU RNNs, theoretically
capable of counting, fail to find the counting weight
configurations in practice when trained using back-
propagation and standard loss functions; El-Naggar
et al. (2023b) went further with determining the
source of this discrepancy, showing that the count-
ing weight configuration is not an optimum of these
loss functions.

Moreover, even in works that report successful
generalization to some degree beyond the training
set, the fact that networks stop generalizing at an
arbitrary point is often left unexplained (Gers and
Schmidhuber, 2001, Suzgun et al., 2019a, 2019b,
Delétang et al., 2022, a.o.).1

The literature on the generalization abilities of
ANNs has made use of a range of measures of
success, making results difficult to compare. Dif-
ferent probes of the same model often use different
success criteria, and generate training and test sets
using different sampling methods and of different
orders of magnitude. Table 1 summarizes selected
probes of ANN generalization and highlights the
fragmented nature of this literature. In the fol-
lowing sections we propose a unified method to
consolidate these efforts and better understand the
generalization capabilities of ANNs.

3 The BLISS index

We present the Benchmark for Language Induction
from Small Sets (BLISS). We provide a formal
description of the method, followed by a concrete
application to specific tasks.

1Technical limitations such as finite activation precision
can be ruled out as explanations for generalization failures, at
least for counter languages and models where network states
serve as memory: as shown in works mentioned above, ANNs
often start outputting wrong predictions for n values in the low
hundreds. Even restricted representations such as 16-bit floats
can hold much larger values, and modern implementations
such as PyTorch use 32-bit floats by default.

The current release consists of three parts: (i) A
specification for the generalization index B, calcu-
lated for a given pair of formal language and ANN;
(ii) A dataset containing a set of formal languages
for benchmarking; (iii) An evaluation of different
ANN architectures using this dataset.

3.1 General setting: models and tasks
For a given model A, e.g., an LSTM, a task is
composed of the following components:

• G – a grammar, e.g., a probabilistic context-
free grammar (PCFG).

• S – a sampling method from L(G), the lan-
guage generated by G.

• C = S(G) – a training corpus, may contain
repetitions.

• T ⊆ L(G) \ C – a test corpus.

• M – a task-specific accuracy metric with ad-
justable error margin

ε ∈ [0, 1]. It uses predictions A(s) on
strings s ∈ T to calculate an accuracy score
M(A, T , ε) ∈ [0, 1].

• N – a task-specific constant for setting the
order of magnitude of dataset sizes. For ex-
ample, N = 3 sets the order of magnitude at
103. Training and test sizes are then derived as
described below. Selecting N is done empiri-
cally based on properties of the task, e.g., lan-
guages with large vocabularies require larger
amounts of training data, hence a larger N .

3.2 From task to generalization index
For a given task, the generalization index of order
N for a model A is then defined as:

BL
N (A) = max

{
b

∣∣∣∣
|T | = 10N × b,
|C| = 10N/ b,

M(A, T , ε) = 1.0

}
(1)

Intuitively, the index compares a model’s perfor-
mance on a test size |T | to the inverse of its training
data size |C|.

The index is expressed as the maximal b factor
which scales the training set and the corresponding
test set in opposite directions: The accuracy con-
dition at the bottom of (1) means that the model
should be ε-close to perfect generalization on the
test set. A model’s generalization index B thus
represents the performance that can be maximally
‘squeezed out’ of an inversely small amount of data.

29

0 200 400 600 800 1000 1200
Training set size | |

0

2000

4000

6000

8000

10000

M
as

te
re

d
te

st
 s

et
 s

iz
e

||

3 = 1
3 = 2

3 = 4

3 = 8

Model performance and corresponding 3 index
3-frontier

Figure 1: Example generalization index scores B3, i.e.,
for a baseline training size of 103. Each dashed line
represents the performance profile of some hypothetical
model, as a function of the size of the training set. The
intersection with the B3-frontier indicates its B3 index.

Figure 1 exemplifies selected B values calcu-
lated based on (1). For illustration, for anbn, using
the order of magnitude N = 3, a model that was
trained on |C| = 103/2 = 500 samples and was
100% accurate on a test set of size 103×2 = 2, 000
will have an index score Banbn

3 ≥ 2. A model for
the same language that was trained on 250 samples
only and generalized to a subsequent set of 4,000
samples will reach Banbn

3 ≥ 4.
For practical reasons, one cannot exhaust all val-

ues of b to find B. However, training and evaluating
a model using a few b values is enough to reveal its
generalization dynamics, as shown in experiments
in Section 5. The following sections describe the
specific choices made for the different benchmark
components in these experiments.

3.3 Learning setup

Previous work surveyed here differed in their learn-
ing setup. Gers and Schmidhuber (2001) and Suz-
gun et al. (2019a, 2019b) trained networks in a
non-probabilistic, supervised setup by exposing the
model to all possible next symbols and minimizing
the mean-squared error (MSE) – i.e., the model is
given explicit information about the distribution of
possible symbols. Joulin and Mikolov (2015) and
Lan et al. (2022) used a setup that we adopt below,
in which model outputs are probabilistic, and train-
ing is self-supervised language modeling (i.e., the
model is exposed to the next symbol only) with a
cross-entropy loss. Weiss et al. (2018) trained a
binary classifier with accept/reject labels based on
positive and negative examples.

Since our focus is grammar induction, here we

adopt the more demanding setup of learning from
positive examples alone. All tasks are thus de-
signed as self-supervised language modeling. At
each time step, a model assigns a probability distri-
bution to the next symbols in the string.

The benchmark is agnostic as to the internals of
the model and its training, as long as its outputs
represent a probability distribution over symbols.
In practice, then, the method can be applied to any
language model, not necessarily an ANN.

3.4 Sampling

To construct the training and test sets C and T we
use the following as method S:

• To construct C, we sample strings according
to the distribution defined by G, with repeti-
tions. For example, if G is a PCFG, it can be
sampled by applying derivation rules chosen
proportionally to their expansion probabilities.
Repetitions are allowed so that C follows a
similar surface distribution to L(G) and so
that the model can pick up on the underlying
probabilities in G.

• To construct T , we take the |T | subsequent
strings starting right after the longest string in
C, sorted by length.2 For example, for the lan-
guage anbn, if the longest string in the training
set C was a17b17, and the model needs to be
tested on a set of 2000 strings, T will be com-
posed of the strings a18b18, ..., a2017b2017.

The sampling method S can be either probabilis-
tic as described here, or exhaustive, training on
all strings in L up to a certain length. We opt for
probabilistic sampling because of the nature of the
task at hand: the models under discussion here are
trained to assign probabilities to the next symbol
in a string, most often minimizing a cross-entropy
loss. In practice, then, they always learn distri-
butions over strings. Thus if C follows a similar
surface distribution to L (given a large enough sam-
ple size), the model should eventually learn this
distribution in order to minimize its loss.

Probabilistic sampling thus makes it possible to
probe both a model’s knowledge about the surface
forms of L (by treating model outputs as categori-
cal classes), and about their distribution. The mod-
ularity of the index makes it possible to choose

2Test strings may need to be sorted further according to
specific properties of a language, see Section 4.1.

30

either option by varying the accuracy metric M , as
we show in the next section.

3.5 Accuracy metrics

Ultimately we are interested in knowing whether a
model accepts all strings in L and rejects all others.
In classical formal language theory, where discrete
automata are used, acceptance is clear cut and taken
as going into an accepting state. ANNs on the
other hand use continuous representations with no
standard acceptance criterion.

Different acceptance criteria have been used in
previous works to measure success for ANNs: Gers
and Schmidhuber (2001) and Suzgun et al. (2019b)
defined acceptance of a string as a model assign-
ing output values above a certain threshold to valid
symbols only; Joulin and Mikolov (2015) measure
accuracy at parts of strings that are completely pre-
dictable; and Weiss et al. (2018) turn a network into
a recognizer by training a binary classifier from
network states to accept/reject labels. Below we
provide general versions of these accuracy metrics
(omitting Weiss et al., 2018 who rely on negative
examples).

Choosing which metric to use is based on
the properties of the language at hand. Well-
performing models might still deviate slightly from
perfect accuracy due to practical limitations, such
as a softmax function preventing a model from
expressing categorical decisions. Thus for each

Input: # (() ())
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/((/) (/) (/) (/) (/) #/(

Input: # a a a b b b
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/a a/b a/b a/b bbb bbb ###

︸ ︷︷ ︸
Deterministic

Figure 2: Inputs and valid next symbols at each step of
a Dyck-1 string (top) and anbn (bottom), including the
start/end-of-sequence symbol ‘#’. For anbn, accuracy
is measured at deterministic steps, after the first ‘b’. For
Dyck-1, accuracy is the fraction of time steps where a
model predicts only valid next symbols: ‘#’ should be
predicted only when brackets are well balanced.

accuracy metric we add an adjustable error margin
ε. Acceptance of a string is defined as reaching
100% accuracy (minus ε) on the string. Success on
the test set is then defined as accepting all strings
in the set (third condition in (1)).

1. Deterministic accuracy (Mdet). Some lan-
guages contain strings with deterministic
phases, where the next symbol is fully pre-
dictable. For example, strings in the language
anbn have two phases, the a phase and the b
phase. As long as only a’s are seen, the next
symbol remains unpredictable as the sequence
can continue with another a or switch to the b
phase. The string becomes deterministic once
the first b appears. Mdet is defined as the frac-
tion of deterministic time steps in which the
model assigns the majority probability to the
correct next symbol. This metric is used in
Joulin and Mikolov (2015).

A string is considered accepted if the model is
1−ε accurate over all deterministic time steps.
Note however that even a very small ε might
benefit models that do not recognize strings
well. For example, for the language anbn, the
deterministic steps in a string are the b’s and
the final end-of-sequence symbol. A degener-
ate model that predicts only b’s will get only
the end-of-sequence symbol wrong out of all
deterministic steps, and will reach a very high
accuracy score. For any large enough test set
these errors will be hidden within the ε margin
and the model will be deemed successful. ε
should therefore be chosen with care per task.

Mdet is used below for the following lan-
guages that have deterministic phases: anbn,
anbncn, anbncndn, and anbmcn+m.

2. Categorical accuracy (Mcat). Some language
strings do not have any predictable phases.
This is the case in the Dyck family of lan-
guages. At each time step in a Dyck string,
one may open a new bracket (see Figure 2).
Mcat is therefore defined as the fraction of
steps in which a network assigns probability
p > ε to each possible next symbol, and p ≤ ε
to irrelevant symbols. Non-probabilistic ver-
sions of Mcat are used in Gers and Schmidhu-
ber (2001) and Suzgun et al. (2019a, 2019b)
who do not treat network outputs as probabil-
ity distributions. Mcat is used below for Dyck
languages.

31

As specified in Section 3.1, the index B is calcu-
lated based on the largest test set for which a model
reaches an ε-perfect accuracy score.

Beyond accuracy, one might be interested in in-
specting a model’s knowledge of the distribution
of strings in L induced by a probabilistic G. This
can be done by using the probabilistic sampling
method described in Section 3.4 and accompany-
ing it with a probabilistic accuracy measure – for
example, one based on an optimal cross-entropy
score, which is known from G’s expansion proba-
bilities (as done in Lan et al., 2022). Feeding loss
values into an accuracy metric will require normal-
izing them across tasks. We leave this extension
for future work.

3.6 String structure

Following Gers and Schmidhuber (2001), each se-
quence starts and ends with a start/end-of-sequence
symbol ‘#’. This turns the task into a strict ac-
ceptance/rejection task – predicting the end-of-
sequence symbol is taken as going into an accept
state. The start- and end-of-sequence symbols are
added to the task-specific vocabulary and are as-
signed probabilities by the model at each step. Fig-
ure 2 illustrates input and target sequences for anbn

and Dyck-1.

3.7 Limitations

One shortcoming of the proposed index score is
that it does not reflect perfect generalization, i.e., it
is an empirical index that cannot point out a model
that outputs correct predictions for any string in
L(G). For most models, this will not be a prob-
lem, and B will simply represent the model’s best
training vs. test size ratio. In the case of a model
that reaches perfect generalization on any input, the
index score will represent the critical training size
that brings the model to this performance.

Assigning a generalization score to infinitely cor-
rect models will remain a problem for any empiri-
cal metric that assigns scores to models based on
finite test values. An alternative to such empirical
probes would be to analytically show that a model
is correct (as done in Lan et al., 2022).

4 Datasets

We provide training and test datasets for a pre-
liminary set of formal languages for evaluation
using the B index. The dataset includes the
languages anbn, anbncn, anbncndn, anbmcn+m,

Dyck-1, and Dyck-2. The source code, datasets,
and specifications for the benchmark are available
at https://github.com/taucompling/bliss.

4.1 Training and test sets
Training sets for context-free languages are sam-
pled from PCFGs as described in Section 3.4. The
PCFGs are given in Appendix B. Training sets for
context-sensitive languages are generated by sam-
pling values for n from a geometric distribution.

Test sets are generated using the method de-
scribed in Section 3.4: All test sets consist of an
exhaustive list of strings ordered by length starting
right after the longest string seen during training.
Test sets for anbmcn+m consist of the list of strings
starting after the last seen pair of n,m, sorted by
n+m values to test all possible combinations.

5 Experiments

5.1 Models
We test the following models: LSTM RNNs
(Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al., 2019a);
and Minimum Description Length RNNs (MDL-
RNN; Lan et al., 2022).

LSTM architectures were developed with the
task of keeping items in memory over long dis-
tances in mind. As mentioned above, Weiss et al.
(2018) have shown that LSTMs are theoretically
capable of recognizing CL.

MARNNs (Suzgun et al., 2019b) are RNNs
equipped with external memory devices, and were
shown to yield better performance when learning
languages that require stack-like devices and be-
yond. Here we use Stack-LSTM, an LSTM aug-
mented with a pushdown automaton; and Baby
Neural Turing Machines (Baby-NTM; itself a vari-
ant of NTMs, Graves et al., 2014), an RNN with a
more freely manipulable memory.3

MDLRNNs are RNNs trained to optimize the
Minimum Description Length objective (MDL;
Rissanen, 1978), a computable approximation of
Kolmogorov complexity, the algorithmic complex-
ity of a model. The intuition behind the objective
is equating compression with finding regularities
in the data: a model that compresses the data well
will generalize better and avoid overfitting. In prac-
tice, optimization is done by minimizing the sum of

3We modify Suzgun et al. (2019a)’s models to output
probability distributions, replacing the final sigmoids with
a softmax layer and the MSE loss with cross-entropy. See
Section 3.3.

32

the architecture encoding length and the standard
cross-entropy loss, both measured in bits based on
a specific encoding scheme.

MDL is a stricter regularizer than standard reg-
ularization techniques such as L1/L2: the latter
penalize large weight values but cannot prevent
models from overfitting using a solution that uses
many small, but informative, weights. MDL pe-
nalizes the actual information content of the net-
work, forcing it to be general and avoid overfitting.
MDLRNNs were shown to learn some of the lan-
guages discussed here in full generality using small
architectures of only 1 or 2 hidden units and to
outperform L1/L2 (Lan et al., 2022).

MDL is a non-differentiable objective, which
requires that MDLRNN be optimized using a non-
gradient based search method, such as an evolu-
tionary algorithm that searches the network archi-
tecture space. Since this method is not based on
gradient descent, Lan et al. (2022) were able to use
non-standard, non-differentiable activations such
as step functions. Here we restrict the architecture
space to only standard activations: the linear func-
tion, ReLU, and tanh. This serves both to compare
MDLRNN with standard networks and to limit the
architecture search space. We publish the result-
ing nets as part of the MDLRNN-Torch release at
https://github.com/0xnurl/mdlrnn-torch.

Appendix A lists the hyper-params for all runs.

5.2 Training sets

We used training sizes |C| = 100, 250, 500, 1000.
We stopped at the smallest size 100 because in
our setup this size results in test strings of lengths
> 10,000, leading to very long running times.

5.3 Index parameters

We calculate the B index for all trained networks
using the following index parameters:

Magnitude parameter N = 3, i.e., training and
test sizes are derived from a baseline size 103. This
order of magnitude was selected based on the train-
ing set sizes used in previous works for the lan-
guages inspected here (Table 1).
Mdet ε = 0.005, i.e., a model needs to correctly

predict the next symbol for at least 99.5% of all
deterministic steps. Since even this high threshold
allows a degenerate model to reach good scores
as described in Section 3.5, we also calculate the
index score using ε = 0, i.e. a model must predict
all deterministic symbols correctly.

Language Model B-index
ε = 0.005 ε = 0

anbn
LSTM 10 <1
Stack-LSTM 10 <1
Baby-NTM 10 1
MDLRNN 10 10

anbncn
LSTM <1 <1
Stack-LSTM 2 <1
Baby-NTM 10 <1
MDLRNN <1 <1

anbncndn
LSTM <1 <1
Stack-LSTM 1 <1
Baby-NTM 4 <1
MDLRNN <1 <1

anbmcn+m
LSTM <1 <1
Stack-LSTM 10 <1
Baby-NTM 4 <1
MDLRNN 4 4

Dyck-1
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN 2 2

Dyck-2
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN <1 <1

Table 2: Generalization scores B. The index represents
how well a model generalizes in relation to its training
size. A score B = 4 indicates that a model trained
on 250 samples reached the accuracy criterion on the
consecutive 4,000 unseen test samples. B < 1 indicates
that the model did not reach the accuracy criterion when
the test size was greater than the training size, but might
reach it for larger training and smaller test sets.

Mcat ε = 0.005, i.e., for Dyck, a model needs
to assign p ≤ 0.005 to each irrelevant symbol and
p > 0.005 to possible ones. Here as well we report
results for ε = 0, i.e., a model must assign non-zero
probabilities to valid symbols only.

6 Results

6.1 Non-perfect accuracy

The generalization index obtained by each model
for each language is presented in Table 2.

We start by inspecting the indexes calculated
using the more lenient accuracy margin ε = 0.005.

For anbn, under this accuracy margin, all models
are assigned index B = 10, i.e., reaching the suc-
cess criterion for the next unseen 10,000 samples

33

1 4 16 64 256 1024 4096
Training size (logarithmic scale)

0

200

400

600

800

1000

M
ax

 c
or

re
ct

 n

anbn max correct n
MDLRNN
LSTM
Baby-NTM
Stack-LSTM
Max training n

Figure 3: Generalization performance of the models
tested here. Models were trained on strings drawn from
anbn and tested on acceptance of strings up to n =
1,000. X’s mark the maximum n seen during training.

after being trained on 100 samples. For the specific
combination of random seed and sampling prior
in these experiments, this means that the models
were trained on strings up to a20b20 and general-
ized to all strings up to at least a10020b10020 with
deterministic accuracy Mdet ≥ 99.5%.

For anbncn, MARNNs reach B = 10 and 2,
while LSTM and MDLRNNs do not reach the suc-
cess criterion, resulting in B < 1. For anbncndn

only MARNNs reach a specified index, with a
Baby-NTM reaching B = 4, indicating that it gen-
eralized to strings as long as a4020b4020c4020d4020

with Mdet ≥ 99.5%.
For the addition language anbmcn+m, Stack-

LSTM and MDLRNN reached index scores B =
10 and 4 respectively. For the specific combination
of random seed and the sampling prior used here,
this means that the winning Stack-LSTM saw max-
imum values of n = 18,m = 20 during training,
and generalized to all strings up to a120b120c240

with Mdet ≥ 99.5%.

6.2 Perfect accuracy

We report the generalization scores using a strict
ε = 0 as well, i.e., when a model is required to
predict all deterministic steps correctly or assign
non-zero probability to valid symbols only. For
languages with deterministic steps such as anbn,
this means that the model needs to always predict
the end-of-sequence symbol correctly, thus mak-
ing a distinction between accepting a string and
approximating its surface structure.

Here, only MDLRNNs remain at the same
scores, indicating that they predicted all time steps
correctly. Baby-NTM reaches B = 1 for anbn, a

inputa

inputb

input#

ReLU 3

-1

1

1
TANH P(#)

0.5

-0.5

-3

TANH P(b)

RELU P(a)
3

Figure 4: RNN cell architecture of the best-performing
MDLRNN for anbn, which trained on 100 samples and
reached B3 = 10. The network uses only one hidden
unit and standard activation functions, and generalizes
up to at least a35000b35000. Dashed arrows are recurrent
connections across time steps. The loop from the hidden
ReLU unit to itself is a counter mechanism evolved by
the evolutionary algorithm to count and compare the
number of a’s and b’s.

drop from 10. The rest of the networks drop to
B < 1, revealing that their good scores in the pre-
vious comparison calculated with a non-zero ε was
due to them approximating the target languages,
even at low n values.

MDLRNN performance here is in line with re-
sults from Lan et al. (2022), who provided evi-
dence that MDLRNNs for these languages do not
only perform empirically well on large test val-
ues, but are also provably correct for any input.
However, here we limited activations to standard,
non-discrete functions (Section 5.1), potentially
limiting the network’s ability to generalize well
in the limit. While we do not provide correct-
ness proofs for the networks found here, the index
scores indicate that MDLRNNs generalize well to
large values using only standard activations. Fig-
ure 4 presents the MDLRNN found for anbn. We
checked whether this network also accepts n val-
ues beyond those needed to reach the score B = 10
(n = 10,020). The network reached 100% Mdet

for all values up to n = 35,000, at which point we
stopped the test due to long feeding times.

Beyond the benchmark scores, Figure 3 plots
the largest n value for anbn strings predicted by
the models tested here with 100% Mdet accuracy
(ε = 0), as a function of training set size. Both
MDLRNNs and Baby-NTMs reach perfect accu-
racy up to the tested maximum of n = 1,000.
MDLRNNs however require two orders of mag-
nitude less data to reach this performance (and
the benchmark scores in Table 2 show that in fact
MDLRNNs generalized up to at least n = 10,000,
while Baby-NTMs remained at 1,000). LSTMs

34

and Stack-RNNs did not generalize well beyond
the training samples. This is in line with previous
works showing that these models may need sub-
stantially more training data in order to learn these
languages (Table 1).

7 Discussion

We provided a simple index for how well a model
generalizes: how much it can learn from how little
data. We illustrated the usefulness of this index in a
comparison of several current models over several
formal languages. Beyond showing which current
models generalize better than others, the bench-
mark also highlights which aspects of artificial neu-
ral networks work well for grammar induction, and
what is still missing.

Among languages that were learned with perfect
accuracy (anbn, anbmcn+m, Dyck-1), MDLRNNs
generalized best, but still failed on others (anbncn,
anbncndn, and Dyck-2). Previous work has shown
that this model’s search procedure, an evolutionary
algorithm, fails to find networks that are manually
shown to have better MDL scores (Lan et al., 2022).
We take this to show that the optimization proce-
dure limits the model and prevents it from taking
full advantage of the MDL objective. The benefit
of the MDL objective is nevertheless evident in the
generalization performance for several languages.

MARNNs clearly benefit from their memory de-
vices and reach good generalization scores, but
testing for perfect accuracy (ε = 0) reveals that
their learning outcome is mostly approximate, and
that they fail to maintain perfect accuracy for long
stretches beyond their training data. This could
be the result of an inadequate objective function
(cross-entropy), limitations of the search (backprop-
agation/gradient descent), or both. We do not cur-
rently have results that help decide this matter, but
recent results for other architectures (El-Naggar
et al., 2023b) hint that the problem lies at least in
part in the objective function.

8 Acknowledgements

This work was granted access to the HPC resources
of IDRIS under the allocation 2023-AD011013783
made by GENCI.

References
Mikael Bodén and Janet Wiles. 2000. Context-free

and context-sensitive dynamics in recurrent neural
networks. Connection Science, 12(3-4):197–210.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A. Ortega. 2022. Neural Networks and the
Chomsky Hierarchy.

Nadine El-Naggar, Pranava Madhyastha, and Tillman
Weyde. 2022. Exploring the Long-Term Generaliza-
tion of Counting Behavior in RNNs.

Nadine El-Naggar, Pranava Madhyastha, and Tillman
Weyde. 2023a. Theoretical Conditions and Empirical
Failure of Bracket Counting on Long Sequences with
Linear Recurrent Networks.

Nadine El-Naggar, Andrew Ryzhikov, Laure Daviaud,
Pranava Madhyastha, and Tillman Weyde. 2023b.
Formal and empirical studies of counting behaviour
in ReLU RNNs. In Proceedings of 16th Edition of the
International Conference on Grammatical Inference,
volume 217 of Proceedings of Machine Learning
Research, pages 199–222. PMLR.

W. Tecumseh Fitch and Marc D. Hauser. 2004. Com-
putational constraints on syntactic processing in a
nonhuman primate. Science, 303(5656):377–380.

Felix Gers and Jürgen Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural Turing Machines. arXiv:1410.5401 [cs].

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop Uploading Test Data in Plain
Text: Practical Strategies for Mitigating Data Con-
tamination by Evaluation Benchmarks.

Armand Joulin and Tomas Mikolov. 2015. Inferring Al-
gorithmic Patterns with Stack-Augmented Recurrent
Nets. In Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization.

Nur Lan, Michal Geyer, Emmanuel Chemla, and Roni
Katzir. 2022. Minimum Description Length Recur-
rent Neural Networks. Transactions of the Associa-
tion for Computational Linguistics, 10:785–799.

Raphaëlle Malassis, Stanislas Dehaene, and Joël Fagot.
2020. Baboons (Papio papio) Process a Context-Free
but Not a Context-Sensitive Grammar. Scientific
Reports, 10(1):7381.

William Merrill. 2021. On the Linguistic Capacity of
Real-Time Counter Automata.

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5):465–471.

35

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 440–449, New
York, NY, USA. Association for Computing Machin-
ery.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019a. LSTM Networks Can
Perform Dynamic Counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov,
and Stuart M. Shieber. 2019b. Memory-Augmented
Recurrent Neural Networks Can Learn Generalized
Dyck Languages. arXiv:1911.03329 [cs].

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the Practical Computational Power of Finite Preci-
sion RNNs for Language Recognition. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740–745.

A Appendix: Hyper-parameters

A.1 Training corpora
All training sets were generated using the
same random seed 100 and prior probability
p = 0.3. The datasets are available at
https://github.com/taucompling/bliss. Following
Jacovi et al. (2023), the datasets are zipped and
password-protected to prevent test data contamina-
tion of large language models through crawling.

Each of the LSTM and MARNN hyper-param
configurations below was run 3 times using dif-
ferent random seeds (100, 101, 102). MDLRNNs
were run once per configuration because of their
longer running time.

A.2 LSTM
LSTMs were trained based on the following hyper-
params grid: hidden state size (2/32/128), regular-
ization technique (L1/L2/none), and the regulariza-
tion constant in case regularization was applied (λ
= 1.0/0.1/0.01). Networks were trained using the
Adam optimizer (Kingma and Ba, 2017) with learn-
ing rate 0.001, β1 = 0.9, and β2 = 0.999. The
networks were trained by feeding the full batch of
training data for 1,000 epochs.

A.3 MARNN
MARNNs were trained by varying the architec-
ture type (Softmax Stack-LSTM/Softmax Baby-
NTM) and stack/memory size (50/100 for Stack-
LSTM, 2050 for Baby-NTM). For Stack-LSTM,

stack sizes were selected so they were always
larger than the largest values seen during training:
n + m = 22 + 24 for anbmcn+m and n = 24
for all other languages. During testing the stack
size was enlarged to 2050, beyond the maximum
needed to reach scores B = 1 and 2. Baby-NTM
memory was set to 2050 already during training be-
cause this model’s memory size affects the weight
dimensions and cannot be changed after training.

The rest of the hyper-parameters were set to the
default values from Suzgun et al. (2019b). Stack-
LSTM: hidden size 8; 1 layer; memory dimension
5; epochs 3/50; learning rate 0.01; Baby-NTM: hid-
den size 8; 1 layer; memory dimension 5; epochs
3/50; learning rate 0.01.

The original MARNN setup was modified here
so that the network outputs represent probability
distributions and not multi-label outputs. This was
done by replacing the sigmoid outputs with a soft-
max layer and the MSE loss with cross-entropy.

A.4 MDLRNN
MDLRNNs were trained using the evolutionary al-
gorithm and the same hyper-params reported in Lan
et al. (2022): population size 500; islands size 250;
25,000 generations; tournament size 2; early stop
after 2 hours of no improvement; elite ratio 0.001;
migration interval 1,000 generations/30 minutes.

B Appendix: PCFGs

B.1 anbn

S →
{

aSb 1− p
ε p

B.2 anbmcn+m

S →
{

aSc 1− p
X p

X →
{

bXc 1− p
ε p

B.3 Dyck-1

S →
{

(S) S p
ε 1− p

B.4 Dyck-2

S →
{ (S) S p/2

[S] S p/2
ε 1− p

36

Chapter 3

Bridging the Empirical-Theoretical Gap in

Neural Network Formal Language Learning

Using Minimum Description Length (joint

with Emmanuel Chemla and Roni Katzir)

Nur Lan, Emmanuel Chemla, and Roni Katzir. 2024. Bridging the Empirical-Theoretical Gap in

Neural Network Formal Language Learning Using Minimum Description Length (arXiv:2402.10013).

arXiv. https://doi.org/10.48550/arXiv.2402.10013

37

https://doi.org/10.48550/arXiv.2402.10013

Bridging the Empirical-Theoretical Gap in Neural Network Formal
Language Learning Using Minimum Description Length

Nur Lan1,2, Emmanuel Chemla1,3, Roni Katzir2

1Ecole Normale Supérieure, 2Tel Aviv University, 3EHESS, PSL University, CNRS
{nur.lan,emmanuel.chemla}@ens.psl.eu

rkatzir@tauex.tau.ac.il

Abstract

Neural networks offer good approximation to
many tasks but consistently fail to reach per-
fect generalization, even when theoretical work
shows that such perfect solutions can be ex-
pressed by certain architectures. Using the task
of formal language learning, we focus on one
simple formal language and show that the the-
oretically correct solution is in fact not an op-
timum of commonly used objectives — even
with regularization techniques that according to
common wisdom should lead to simple weights
and good generalization (L1, L2) or other meta-
heuristics (early-stopping, dropout). However,
replacing standard targets with the Minimum
Description Length objective (MDL) results in
the correct solution being an optimum.

1 Introduction

Probing Artificial Neural Networks’ (ANNs) ca-
pabilities in the domain of language learning has
advanced in two complementary paths – theoretical
and empirical. Theoretical work tries to delineate
the kinds of languages and phenomena that can be
expressed by ANNs, and empirical work involves
training networks on such tasks and inspecting their
performance.

An often overlooked fact is that these paths have
still not converged: while theoretical work contin-
ues to provide findings regarding the expressivity
of different architectures, empirical work keeps ar-
riving at suboptimal solutions that fall short of the
theoretically correct ones. For example, for for-
mal languages such as anbn or Dyck-1, among
many others, we are not aware of any network
trained through gradient descent that was shown to
perform well on strings that are orders of magni-
tudes longer than those seen during training, while
failures at low lengths are pervasive (Joulin and
Mikolov, 2015, Weiss et al., 2018, Suzgun et al.,
2019, Bhattamishra et al., 2020, El-Naggar et al.,

2022, among others; see Lan et al., 2023 for an
overview). This stands in contrast to symbolic mod-
els, where the requirement for solution correctness
across lengths is trivially met.

Why this would be the case is often either left
unexplained or waved off as a shortcoming of the
optimization method (most often, gradient descent
using backpropagation). In this work we argue that
these failures are not due to training misfortunes
that could be overcome, for example, by using a
more exhaustive hyper-parameter search. Rather,
they are due to inherent characteristics of the train-
ing objectives currently used for such tasks.

Our main contributions are:

1. We present a manually built, optimal
Long Short-Term Memory network (LSTM;
Hochreiter and Schmidhuber, 1997) that ac-
cepts the formal language anbn, following a
general recipe given in Weiss et al. (2018). We
show that this network would not be found us-
ing standard training objectives, since it does
not lie at optimum points of these objectives –
even when using regularization terms which
according to common wisdom should result
in general solutions.

2. We show that by replacing these objectives
and regularization terms with an objective to
minimize the network’s Minimum Descrip-
tion Length (MDL, Rissanen, 1978), accom-
panied by an intuitive encoding scheme, the
optimal network becomes an optimum of the
objective.

The full experimental materials and source code
are available at https://github.com/0xnurl/
mdl-lstm .

2 Previous work

We rely mainly on three recent works, which we
extend in the following ways. First, the current

38

(a) L1 (b) L2 (c) |H|

Figure 1: Loss surfaces around the golden anbn LSTM from Section 4, for the regularization terms considered here:
L1, L2, and |H| – the hypothesis encoding length term of the MDL objective. |H| is jagged and non-differentiable
but results in the correct net being an optimum of the full loss function (Figure 4).

work is similar to El-Naggar et al. (2023), who in-
spected the role of the objective function in formal
language learning. They showed that for a simple
recurrent neural network (RNN), which uses a sin-
gle ReLU layer, the optimal counting solution does
not align with optima of common loss functions
(cross-entropy and mean squared error). This was
done by providing necessary and sufficient condi-
tions for implementing counting in a ReLU-RNN.
We extend this work in the following ways. First,
we move to the more commonly used LSTM RNN.
Since this architecture is more complex, it is also
harder to find such sufficient and necessary con-
ditions for counting as done by El-Naggar et al.
(2023). This leaves our results mostly empirical,
compared to their analytical result. However, we go
beyond that work by also providing an alternative
objective (MDL), for which the optimal network
becomes an optimum.

Second, in order to locate such an optimum of
the objective, we build an optimal LSTM that ac-
cepts a specific formal language. For this we rely
on Weiss et al. (2018), who showed that an LSTM
can theoretically implement counting using specific
weight configurations, so that the state vector holds
a counter that can be incremented and decremented
based on the input. Here we implement their gen-
eral recipe to build an optimum LSTM that accepts
the language anbn. We focus on one language for
simplicity, and the method can be easily extended
to more languages.

Third and closest to the current work, Lan et al.
(2022) applied the MDL principle to RNNs for
formal language learning. The resulting networks
were shown to be correct for any string for lan-
guages such as anbn, anbmcn+m, and Dyck-1.
Since this objective resulted in a non-differentiable
loss function, Lan et al. (2022) used neuroevolution

to search the hypothesis space, evolving free-form
RNN cells. Since our focus in this work is the ob-
jective, here we leave the search algorithm aside
and use a single fixed architecture for which a the-
oretical target is known to exist (LSTM). We then
inspect the effect of the objective function on po-
tential weight solutions.

More broadly, empirical work using RNNs for
artificial grammar learning have been carried out
at least since the introduction of Simple RNNs in
Elman (1990). Theoretical work regarding RNNs’
theoretical computational power go back at least
to Siegelmann and Sontag (1992), who showed
that RNNs are Turing-complete under certain per-
missive assumptions (infinite activation precision
and unbounded running time). The empirical suc-
cess of ANNs in the practical field of natural lan-
guage processing (NLP) has led to recent interest
in the theoretical power of RNNs under practical
conditions, mainly real-time processing and finite
precision (Weiss et al., 2018, Merrill et al., 2020).
Other recent work has applied similar methods to
the transformer architecture (see survey in Strobl
et al., 2023).

In terms of empirical results, works since El-
man (1990) trained ANNs to recognize formal lan-
guages and most often tested for generalization
using unseen string lengths and depths (Gers and
Schmidhuber, 2001, Joulin and Mikolov, 2015,
among many others). Lan et al. (2023) provide
an overview of such works; they show that com-
mon to these works is a failure to generalize beyond
a certain tested length. Lan et al. (2023) also pro-
vide a standardized benchmark for formal language
learning, and find that RNNs trained to optimize
standard losses fail to generalize well from reason-
ably small amounts of data, while an RNN vari-
ant trained to minimize MDL (Lan et al., 2022) is

39

able to generalize significantly better (potentially
infinitely so).

Applying the MDL criterion to ANNs also dates
back to at least the early 1990’s. (See Schmidhuber,
1997 for an overview of early attempts in this area,
and Lan et al., 2022 for a review of more recent
work.) Hinton and Van Camp (1993) minimized the
encoding length of the weights alongside the pre-
diction error, while leaving the architecture fixed.
Hochreiter and Schmidhuber (1994) provided an
algorithm that searches for networks that lie at ‘flat
minima’ – regions of parameter space where er-
ror remains relatively similar; this preference is
given an MDL justification. Zhang and Muhlen-
bein (1993) used a genetic algorithm to search for
network architectures that minimize an MDL score,
using a weight encoding similar to L2 regulariza-
tion. Schmidhuber (1997) presented an algorithm
for discovering networks that optimize a running-
time based complexity metric that is closely related
to MDL (Levin complexity).

3 General setup

We describe here the technical background leading
to the experiments in Section 4.

3.1 Minimum Description Length
Striking a balance between model complexity and
its fit to the data is important in order to avoid both
overfitting and underfitting. It is generally assumed
that minimizing model complexity is good (Oc-
cam’s razor). This general principle was formalized
within Kolmogorov Complexity (KC; Solomonoff,
1964, Chaitin, 1966, Kolmogorov, 1968), defined
as the length of the shortest program that generates
specific data.

KC however is non-computable, a result of the
target representation being Turing-complete. The
Minimum Description Length principle (MDL; Ris-
sanen, 1978) makes it possible to escape the non-
computability of KC by relaxing the requirement
of a Turing-complete representation, and moving to
a less powerful formalism (for example, a context-
free grammar).

Formally, consider a hypothesis space H and
input data D. The MDL principle aims to find a
hypothesis H∗ that minimizes the sum:

H∗ = arg min
H∈H

|H|C + |D : H| (1)

where |H|C is the length of H encoded using an
encoding scheme C for encoding hypotheses in

H. Encoding length is usually measured in bits.
|D : H| is the encoding length of D given H .

Minimizing |H|C alone would result in a degen-
erate, over-general model that does not fit the data
well. Conversely, minimizing |D : H| alone would
result in overfitting. Minimizing both terms to-
gether results in a reasonable compromise between
generalization and accuracy.

3.2 Encoding a network

In this work, hypotheses inH are taken to be LSTM
networks with one linear output layer, followed by
a softmax function. Here we describe an encoding
scheme for such networks which makes it possible
to measure their encoding length |H|.

We first note that a reasonable encoding scheme
for networks should follow an intuitive notion of
simplicity in order to penalize overfitting (i.e., lead
to larger encoding length). Equating scalar magni-
tude with simplicity is not enough, since it is still
possible to ‘smuggle’ large amounts of informa-
tion inside very small scalar values. One extreme
example is using a fractal encoding in the spirit
of Siegelmann and Sontag (1992) or Tabor (2000)
which encodes a stack inside a small rational num-
ber.1,2 However, less sophisticated overfitting is
also conceivable using highly specific weights, for
example if a model assigns specific probabilities
due to sampling artefacts in the training set. A
reasonable objective should make such memoriza-
tion worthwhile only if the data justify it, e.g., if it
contains many repetitions of the same pattern.

Regularization terms such as L1/L2 are not good
enough then, since they would deem, for example,
a simple value such as 1 worse than a smaller yet
highly informative value (e.g.,

∑n
1

2wi+1
4i

< 1, the
fractal encoding of a binary stack w, from Siegel-
mann and Sontag, 1992).3

For MDL, the encoding scheme C explained in
Section 3.1 needs to be chosen so that it fulfill the
simplicity requirement. We opt for the following
encoding scheme, used in Lan et al. (2022).

1These works use activation values, not weights, to store
such values. However, such a construction still illustrates the
difference between information content and scalar magnitude.

2Admittedly and as discussed also in Weiss et al. (2018),
standard gradient-based methods would most probably not
reach such highly specific weight configurations. This does
not mean however that such solutions do not exist in the search
space, and that better search algorithms would not find them.

3Note that simply taking the log of the weight’s value, thus
roughly converting it to its length in bits, would not be enough
either: this would simply result in a rescaling of the weight.

40

A weight wij is represented as a rational fraction
n
m . The numerator and denominator are encoded
using the prefix-free encoding for integers from Li
and Vitányi (2008):

E(n) = 11111 . . . 1111︸ ︷︷ ︸
Unary enc. of ⌈log2n⌉

0︸︷︷︸
Separator

10101 . . . 00110︸ ︷︷ ︸
Binary enc. of n

Both encodings are then concatenated, with an
extra bit for the sign. For example, the weight
wij = +2

5 would be encoded as:

1︸︷︷︸
+

E(2) = 11010︸ ︷︷ ︸
2

E(5) = 1110101︸ ︷︷ ︸
5︸ ︷︷ ︸

wij

This encoding fulfills the requirement above: the
encoding of very specific or informative weights
would be considerably longer than that of intu-
itively simpler values such as 1.

In the current setup, the LSTM architectures vary
only by the size of the hidden vector and the values
of the weights. In order to reliably encode a specific
network one needs to encode only the weights of
the LSTM cell and output layer, and prepend the
size of the hidden vector. The encoding of a specific
network would then be:

11011︸ ︷︷ ︸
E(hidden size)

11 . . . 01︸ ︷︷ ︸
···

10 . . . 01︸ ︷︷ ︸
wij

11 . . . 10︸ ︷︷ ︸
···︸ ︷︷ ︸

Weight encoding︸ ︷︷ ︸
LSTM encoding

To calculate |H| for networks trained through
backpropagation with floating-point weights, in
sections below floats are converted to the closest
rational with denominator m ≤ 1000.

3.3 Language modeling

We use the formal language anbn as a test case
throughout this work, and probe different networks’
performance on recognizing it. Strings are drawn
from the following probabilistic context-free gram-
mar (PCFG):

S →
{

aSb 1− p
ε p

(2)

with p = 0.3 for all tasks. We use a standard lan-
guage modeling setup in which the network is fed
one symbol at a time, and outputs a probability
distribution over the alphabet, predicting the next

symbol in the string. Following Gers and Schmid-
huber (2001), each string starts and ends with a
special symbol.

The training set is sampled by generating strings
from (2). The validation set consists of all consecu-
tive strings starting right after the last n in the train-
ing set. The validation loss is weighted per-sample
so that it follows the same power law distribution
induced by (2). The train-validation split in all ex-
periments is 95%-5%. In the following sections
the training size is 1,000, i.e., a 950-50 split. The
maximum n in this training set was 21, so the vali-
dation set contained all strings with 22 ≤ n ≤ 71.
The test set in all experiments consisted of all anbn

strings with 1 ≤ n ≤ 1,500.
The network is fed one symbol at a time, and at

each step outputs a probability distribution p̂ over
the alphabet for predicting the next symbol in the
string. The baseline loss function we use is the
standard cross-entropy loss (CE):

CE(p, p̂) = −
n∑

i=0

p(ci)log(p̂(ci)) (3)

where n is the length of a sequence, ci is the target
symbol at time step i, p(ci) is the target probability
at time step i for this symbol, and p̂(ci) is the prob-
ability assigned by the network to this symbol at
this time step. In a language modeling setting the
target p(ci) is set to 1, resulting in:

CE(p, p̂) = −
n∑

i=0

log(p̂(ci)) (4)

This sum is then averaged over all time steps for
all sequences.

To measure accuracy on the task, we use deter-
ministic accuracy (Joulin and Mikolov, 2015, Lan
et al., 2023), defined as the ratio of correct answers
at parts of the string that are completely predictable
(a correct answer being the network assigning the
maximum probability to the correct next symbol).
For anbn strings, this means measuring accuracy
at the phase that starts once the first ‘b’ appears,
including the end-of-sequence symbol. Measuring
accuracy at the end-of-sequence symbol turns the
task into a strict acceptance task and can distin-
guish a good network that correctly balances the
number of a’s and b’s, from a degenerate network
that, e.g, gets a high deterministic accuracy score
simply by only predicting b’s.

41

3.4 Loss surface exploration
Our goal is to test which objectives could lead to
optimal solutions. While exhaustive search of the
parameter space is infeasible, we can explore only
parts of the loss space and check if an objective
function turns out to favor suboptimal solutions
over an optimal one. This would be an indicator
that this objective is not suitable for the task (and
would lead to reliance on meta-heuristics such as
early stopping). We do this by exploring the loss
surfaces around an optimal network that solves
the task perfectly and around a backpropagation-
trained network.

For a given network with parameters θ, and for
a loss function L, the network’s loss is L(θ) (for
some input x, omitted here). For the 2D visual-
ization we use below, the area around a specific
network’s θ can then be explored by using two
direction vectors δ and η, and plotting:

f(α, β) = L(θ + αδ + βη) (5)

We use the exploration technique by Li et al.
(2018): δ and η are randomized from a Gaussian;
then, specific parts of each direction vector are nor-
malized so that they have the norm of the respective
parts in the original θ. For fully-connected layers
like the ones used in LSTMs, normalization is done
for each set of weights leading to a specific neu-
ron. This normalization technique preserves the
relative scale of different weight components of
a network, and was shown to better reflect prop-
erties like convexity when exploring a network’s
surrounding space. In all plots below we use 51
equally spaced values of α, β ∈ [−1, 1]. Explo-
ration using larger ranges did not affect the results
either visually or quantitatively.

3.5 Objectives
The objective functions for all tasks below share
the following structure:

L(θ) = CE + λReg(θ),

Here, CE is the training cross-entropy loss (4)
using the distribution p̂ outputted by the network.
For the MDL objective in (1), CE serves as |D : H|.
This can be justified in encoding-length terms since
(4) gives the expected length in bits for transmitting
the string using Shannon-Fano encoding.

In the second term, Reg is either L1(θ) =∑
wij∈θ |wij |, L2(θ) =

∑
wij∈θ wij

2, or no reg-
ularization. For the MDL objective, Reg(θ) is |H|

– the encoding length of a network encoded using
the method in Section 3.2. λ is a coefficient used to
calibrate the level of regularization during training,
and is usually chosen empirically.

The common wisdom motivating the regulariza-
tion term in all cases is to prevent models from
overfitting. In the L1/L2 regularization framework,
this is done by preventing large weights. Using L1
also leads to a preference for zero-value weights,
thus potentially removing connections altogether;
this can be thought of as a differentiable way to per-
form architecture search. However, as suggested
in Section 3.2, both terms do not seem like good
proxies for the |H| term, since small weights can
in fact be very informative (i.e., very complex).

Figure 1 plots the three regularization terms con-
sidered here, surrounding the optimal network pre-
sented in Section 4. It can be seen that while the
loss surfaces for L1/L2 are smooth, moving to
MDL would result in a highly irregular surface,
hostile to gradient methods. We return to the ques-
tion of searching through this space in Section 6.

4 Optimal vs. trained anbn LSTM

Here we compare an optimal, manually-
constructed LSTM that recognizes the language
anbn perfectly, with an LSTM trained through
backpropagation on the same task. We name the
optimal network ‘golden’ to avoid confusion with
general optimum points. The golden network is
optimal in the sense that it always outputs the
correct probabilities at each step of an anbn string
drawn from (2), for any value of n. The optimal
probabilities are presented in Figure 2a.

The goal of the experiment is to test whether
a perfect solution can be found when using the
different objectives considered here. Exhausting
the entire parameter space is infeasible, even for
networks with the very small hidden size (3) used
here. However, if the golden network turns out
to not be an optimum of certain objectives, i.e., a
worse-performing network will be deemed better
by an objective, we can conclude that this objective
would not lead to this specific network.

4.1 Golden anbn network

The golden network is implemented based on a
general recipe given in Weiss et al. (2018), who
showed that an LSTM can theoretically implement
counting using specific configurations of the gate
weights, so that the state vector holds a counter

42

(a) Golden network

(b) Best trained network

Figure 2: Output probabilities assigned by the golden
network and the best trained network for n = 73, the
first point of failure of the trained network. Going left
to right, each column represents the probability distribu-
tion outputted by the network at each time step.

that can be incremented and decremented based
on the input. This makes it possible for LSTMs
to recognize a family of formal languages called
Counter Languages. Roughly, this family corre-
sponds to languages which can be recognized using
a counting mechanism in real-time (Merrill, 2021).
This includes anbn. In an empirical experiment,
however, Weiss et al. (2018) trained LSTMs on rec-
ognizing the language and found that the networks
did not converge on the fully general counting so-
lution, rather it converged on a suboptimal solution
that failed to recognize anbn strings starting at n
as low as 256.

We describe here in general terms the mechanics
of the golden network. The full construction is
given in Appendix B. The weights of the LSTM
cell are set so that the network keeps track of the
number of a’s compared to the number of b’s seen
at each time step. Figure 3a plots the values of the
memory vector of the LSTM during feeding of an
anbn string, illustrating its counting mechanism.
On top of the LSTM cell we add a linear layer that
receives the hidden state as input, and outputs the
correct target probabilities through a final softmax.

The manual network reaches 100% test accuracy

(a) Golden network

(b) Best trained network

Figure 3: Memory values for the golden network and
the best trained network for n = 73, the first point of
failure of the trained network. Each line corresponds to
one component of c, the memory vector in the LSTM
cell, as the string is fed to the network.

on the test set which contains all anbn strings with
1 ≤ n ≤ 1500, and in fact can be shown to be
correct for any n.

4.2 Backpropagation-trained anbn LSTM

We compare the golden network with networks
trained on the same task using standard techniques.
We run a hyper-parameter grid search to train
LSTMs that have the same architecture as the man-
ual network: hidden size 3 and a single linear out-
put layer, followed by a softmax. The grid covers
the following hyper-parameters: training set size,
weight initialization method, regularization term,
dropout rate, and early stopping patience based
on validation loss, across five different random
seeds. The grid yields 3,360 configurations. The
full hyper-parameter grid is given in Appendix A.

The overfitting prevention techniques explored
here belong to two groups: techniques where a
regularization term is added directly to the loss
function (L1, L2), and meta-heuristics external to
the objective (dropout, early-stopping based on val-
idation loss), aimed at preventing the loss from
getting too low. Since our focus here is the objec-
tive function, we could potentially not include the

43

meta-heuristics. We still include dropout and early
stopping however in order to compare the golden
network with a network trained in a practical set-
ting with the best chances to succeed. In Table 1
in the appendix we provide the same comparison
for the best network that was trained without early
stopping or dropout.

We select the best network out of all runs based
on validation loss. The best network reached 77.3%
test accuracy (i.e. on 1 ≤ n ≤ 1,500) and was
trained with the following parameters: training size
1000 (950-50 train-validation split); no regulariza-
tion term; early stopping patience of 2 epochs; no
dropout; normal weight initialization.

4.3 Network behavior
We start by comparing the behavior of the golden
and trained networks. The best trained network cor-
rectly accepts all strings with n ≤ 72 (the largest
n in the training set was 21). We compare the net-
works using the first point of failure of the trained
network, n = 73. Figure 2 plots the output prob-
abilities assigned by the two networks throughout
the sequence, and Figure 3 plots their memory val-
ues (c in the LSTM cell).

We first examine the network outputs in Figure 2.
At first blush, the trained network seems success-
ful, following the language distribution induced by
(2) and visualized in Figure 2a almost perfectly.
However, the network is imperfect in two ways:
first, probabilities at the beginning of the string are
incorrect, most probably due to overfitting of more
frequent low-n values in the training set. Addi-
tionally and more crucially, the network’s count
seems to leak, with probability mass for the end-of-
sequence symbol assigned to the before-last time
step. This becomes a problem for n ≥ 73, when
the network starts accepting illicit anbn−1 strings.

As for the inner workings of the network, visu-
alizing the network’s memory in Figure 3b shows
that the network has indeed developed some count-
ing mechanism in at least one component of the
memory vector (it is unclear how it uses the other
two), which seems to be imperfect as it goes below
0 towards the end of string.

4.4 Loss exploration
Is the suboptimal performance of the trained net-
work above simply a misfortune of the current
setup? We explore the possibility that the culprit
might be the objective function. We do this by com-
paring the loss values of the golden network with

the trained network’s, using standard objectives
and the MDL objective.

Beyond measuring the loss value of the two net-
works considered here, we also explore their sur-
rounding loss landscape in order to check for al-
ternative local minima and inspect properties like
convexity and smoothness of the loss. This is done
using the technique described in Section 3.4.

Figures 4 and 5 plot the different loss surfaces
around the networks. On each plot we mark the
minimum point in the neighborhood, to check if it
aligns with the network under investigation. If it
does not, using that loss (either for fine-tuning the
network or training from scratch) would potentially
end up at that other minimum. For each relevant
point we use the parameter vector to build the cor-
responding LSTM, and calculate its test accuracy.

We start by exploring the loss surface around
the golden network.4 Figures 4a and 4b show that
if L1 or L2 regularization were used, the golden
network would not have been found – rather, using
these regularization terms would lead the search to
suboptimal networks that have better training loss
values, but also worse test accuracy. For the MDL
loss, plotted in Figure 4c, the minimum aligns with
the golden network, showing that at least in this
neighborhood, searching with MDL as an objective
would lead to the correct solution. In Section 6 we
discuss potential limitations to these findings.

Figure 5 plots the different loss surfaces around
the best trained network. We plot in 3D for compar-
ison with the relevant value for the golden network,
which lies in a different area of the loss space. Here,
for all objectives, the winning network lies in a
smooth and convex area. This is an expected result
of using a gradient-based optimization. When eval-
uated using L1 and L2 regularization, the golden
network ranks worse by the relevant losses. For the
MDL objective the image is reversed: the trained
network ranks worse, lying in the smooth basin
seen in Figure 5c, while the MDL score of the
golden network remains unreachable below. Since
the two networks’ cross-entropy terms are almost
identical (see Table 1), this inversion is mainly due
to to the |H| term, which suggests that the trained

4We omit plotting the standalone cross-entropy loss be-
cause it is trivial to show that minimizing this loss alone will
lead to overfitting (partially explaining the fact that the best
performing network ends up using early stopping). Table 1 in
the appendix demonstrates this using the next-best grid-search
network that was trained without a regularization term or early
stopping, whose cross-entropy loss goes below that of the
golden network’s.

44

(a) CEtrain + L1 (b) CEtrain + L2 (c) CEtrain + |H| (MDL)

Figure 4: Training loss around the golden anbn LSTM, and test accuracy scores for the golden network and the
local minimum network. Optimizing using L1 or L2 (4a, 4b) would result in suboptimal networks, while MDL (4c)
results in alignment of the golden network with an optimum point of the loss.

(a) CEtrain + L1 (b) CEtrain + L2 (c) CEtrain + |H| (MDL)

Figure 5: Training loss surfaces and the test accuracy of the best anbn LSTM found through a hyper-param grid
search, trained using backpropagation with the standard cross-enropy loss and early stopping based on validation
loss. When evaluated using L1 or L2 (5a, 5b) the network ranks better than the golden network, but has worse test
performance. When evaluated using MDL (5c) the trained network does not minimize the loss as well as the golden
network, ending up in a smooth but suboptimal area of the loss space.

network uses over-informative weights. Results for
more λ values for all networks are given in Table 1.

5 Discussion

We presented a comparison between common
overfitting-prevention techniques, among them
some that equate simplicity with scalar magnitude,
and the MDL objective accompanied with an en-
coding scheme for weights which favors an intu-
itive notion of simplicity. Combined with a man-
ually built LSTM that optimally recognizes anbn,
we could measure the loss values of an optimal so-
lution and check if they align with optimum points
of the loss function. It was only when we used
MDL that the optimal network aligned with the
minimum of the loss. For the other loss functions,
networks lying at minimum points had far from op-
timal performance. Using meta-heuristics such as
early stopping mitigated overfitting to some extent,

but still did not lead to a fully general solution.
We interpret these findings as an indicator that

ANNs’ failure to converge on provably existing,
optimal solutions is not accidental, but rather an
inherent and pathological property of the way that
current models are trained. This is in line with
a mounting list of generalization failures to learn
formal languages, as well as more complicated
natural language tasks.

We focused here on RNNs, mainly because they
lend themselves easily to manual construction and
inspection. However, we see no a priori reason why
our results would not extend to other architectures
such as transformers or convolutional networks,
given the generality of the MDL principle, and the
fact that it has been shown to be beneficial across
various domains and learning tasks, including lin-
guistic phenomena (see Stolcke, 1994, Grünwald,
1996, de Marcken, 1996, and Rasin et al., 2021,
among others).

45

6 Limitations

In Section 4.4 we explored the loss surface around
the golden network using different objectives, and
found that using L1/L2 regularization leads to sub-
optimal networks lying at optimum points, while
using the MDL objective leads to the golden net-
work lying at an optimum point. However, since the
loss exploration is not (and cannot be) exhaustive,
caution is needed when making generalizations
based on these results.

First, when using L1/L2, it is still possible of
course that better optima lie somewhere else in the
loss spaces, and that the respective minimizing net-
works have perfect performance. However, given
the discussion in Section 3.1 about scalar magni-
tude vs. simplicity, we find this possibility unlikely,
but admittedly still possible.

Conversely, when using the MDL objective, here
it is conceivable that other networks would have
better MDL scores and suboptimal performance.
While this cannot be ruled out completely, we be-
lieve that using the MDL objective accompanied
by a reasonable encoding scheme like the one used
here makes over/under-fitting unlikely. This is ar-
guably not the case for L1/L2. (Another possi-
bility, that of a network with a better MDL score
but equivalent perfect performance, is more likely,
given that the golden network was manually de-
signed and can potentially be optimized further.)

Finally, a major practical limitation of the current
work relates to the non-differentiability of the MDL
objective. This is especially problematic for ANNs,
given that current standard training methods rely
almost exclusively on gradient descent. One could
then consider L1/L2 as a differentiable proxy for a
strict formalization of simplicity. However, the cur-
rent work sheds light on the shortcomings of these
compromises. This in turn could lead both to a
more informed use of such proxies, and potentially
to further research regarding better optimization
techniques for MDL.

7 Acknowledgements

This project was provided with computer and stor-
age resources by GENCI at IDRIS thanks to the
grant 2023-AD011013783R1 on the supercom-
puter Jean Zay’s V100 partition.

References
Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.

2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7096–7116, Online. Association for Computational
Linguistics.

Gregory J. Chaitin. 1966. On the length of programs
for computing finite binary sequences. Journal of the
ACM, 13:547–569.

Carl de Marcken. 1996. Unsupervised Language Acqui-
sition. Ph.D. thesis, MIT, Cambridge, MA.

Nadine El-Naggar, Pranava Madhyastha, and Tillman
Weyde. 2022. Exploring the Long-Term Generaliza-
tion of Counting Behavior in RNNs.

Nadine El-Naggar, Andrew Ryzhikov, Laure Daviaud,
Pranava Madhyastha, and Tillman Weyde. 2023. For-
mal and empirical studies of counting behaviour in
ReLU RNNs. In Proceedings of 16th Edition of the
International Conference on Grammatical Inference,
volume 217 of Proceedings of Machine Learning
Research, pages 199–222. PMLR.

Jeffrey Elman, L. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Felix Gers and Jürgen Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

Peter Grünwald. 1996. A minimum description length
approach to grammar inference. In Stefan Wermter,
Ellen Riloff, and Gabriele Scheler, editors, Connec-
tionist, Statistical and Symbolic Approaches to Learn-
ing for Natural Language Processing, Springer Lec-
ture Notes in Artificial Intelligence, pages 203–216.
Springer.

Geoffrey E. Hinton and Drew Van Camp. 1993. Keep-
ing the neural networks simple by minimizing the
description length of the weights. In Proceedings
of the Sixth Annual Conference on Computational
Learning Theory, pages 5–13.

Sepp Hochreiter and Jürgen Schmidhuber. 1994. Sim-
plifying Neural Nets By Discovering Flat Minima. In
Advances in Neural Information Processing Systems,
volume 7. MIT Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Armand Joulin and Tomas Mikolov. 2015. Inferring Al-
gorithmic Patterns with Stack-Augmented Recurrent
Nets. In Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization.

46

Andrei Nikolaevic Kolmogorov. 1968. Three ap-
proaches to the quantitative definition of informa-
tion. International Journal of Computer Mathemat-
ics, 2:157–168.

Nur Lan, Emmanuel Chemla, and Roni Katzir. 2023.
Benchmarking Neural Network Generalization for
Grammar Induction. In Proceedings of the 2023
CLASP Conference on Learning with Small Data
(LSD), pages 131–140, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Nur Lan, Michal Geyer, Emmanuel Chemla, and Roni
Katzir. 2022. Minimum Description Length Recur-
rent Neural Networks. Transactions of the Associa-
tion for Computational Linguistics, 10:785–799.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. Advances in neural information pro-
cessing systems, 31.

Ming Li and Paul Vitányi. 2008. Chapter 1.4, Binary
Strings. In An Introduction to Kolmogorov Complex-
ity and Its Applications, Texts in Computer Science.
Springer New York, New York, NY.

William Merrill. 2021. On the Linguistic Capacity of
Real-Time Counter Automata.

William Merrill, Gail Weiss, Yoav Goldberg, Roy
Schwartz, Noah A. Smith, and Eran Yahav. 2020.
A Formal Hierarchy of RNN Architectures. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 443–459,
Online. Association for Computational Linguistics.

Ezer Rasin, Iddo Berger, Nur Lan, Itamar Shefi, and
Roni Katzir. 2021. Approaching explanatory ad-
equacy in phonology using Minimum Description
Length. Journal of Language Modelling, 9(1):17–
66.

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5):465–471.

Jürgen Schmidhuber. 1997. Discovering Neural Nets
with Low Kolmogorov Complexity and High Gen-
eralization Capability. Neural Networks, 10(5):857–
873.

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 440–449, New
York, NY, USA. Association for Computing Machin-
ery.

Ray J. Solomonoff. 1964. A formal theory of inductive
inference, parts I and II. Information and Control,
7(1 & 2):1–22, 224–254.

Andreas Stolcke. 1994. Bayesian Learning of Proba-
bilistic Language Models. Ph.D. thesis, University
of California at Berkeley, Berkeley, California.

Lena Strobl, William Merrill, Gail Weiss, David Chiang,
and Dana Angluin. 2023. Transformers as Recogniz-
ers of Formal Languages: A Survey on Expressivity.
arXiv preprint arXiv:2311.00208.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM Networks Can
Perform Dynamic Counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Whitney Tabor. 2000. Fractal encoding of context-free
grammars in connectionist networks. Expert Systems,
17(1):41–56.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the Practical Computational Power of Finite Preci-
sion RNNs for Language Recognition. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740–745.

Byoung-Tak Zhang and Heinz Muhlenbein. 1993.
Evolving optimal neural networks using genetic al-
gorithms with Occam’s razor. Complex systems,
7(3):199–220.

A Grid search hyper-params

Training size: 500/1000/5000/10000. Random
seed: 100/200/300/400/500. Regularization:
none/L1/L2. Regularization lambda when relevant:
0.1/0.5/1.0. Dropout rate: none/0.2/0.4/0.6. Early
stop after no improvement for number of epochs:
none/2/10. Weight initialization: uniform/normal.

All simulations used the Adam optimizer
(Kingma and Ba, 2017) with learning rate 0.001,
β1 = 0.9, β2 = 0.999, and ran for 20,000 epochs
unless stopped by early stopping.

B Golden anbn LSTM construction

This section spells out the construction of the opti-
mal anbn network from Section 4. The network is
designed to output the correct probability distribu-
tion for anbn strings induced by the PCFG in (2).
The target probabilities are plotted in Figure 2a.

The general idea is to implement a counting
mechanism in the LSTM cell and then to pass
this value through a linear layer and a softmax,
which outputs the target probabilities. A full Py-
Torch implementation of the network is given at
https://github.com/0xnurl/mdl-lstm .

B.1 Representations and constants
We use a standard LSTM cell represented by the
following functions:

47

Loss λ
Golden net Best trained net Best trained, no early stopping

Loss Test acc. % Loss Test acc. % Loss Test acc. %

CE - 3.58e-01 100.00 3.58e-01 77.33 3.57e-01 64.97

CE + L1
0.1 2.50e+02 100.00 1.67e+01 77.21 1.85e+01 86.73
0.5 1.24e+03 96.23 8.17e+01 77.21 8.94e+01 96.24
1.0 2.48e+03 0.00 1.63e+02 0.13 1.78e+02 96.24

CE + L2
0.1 3.72e+04 99.87 4.23e+01 77.21 5.80e+01 90.34
0.5 1.86e+05 99.87 2.10e+02 70.38 2.85e+02 91.81
1.0 3.72e+05 99.87 4.20e+02 70.38 5.69e+02 91.81

MDL - 3.92e+03 100.00 5.88e+03 77.98 5.87e+03 69.68

Table 1: Minimum training loss values and best test accuracy scores in the space surrounding the following networks:
the golden network, the best trained network which used early stopping, and the best trained network that was
trained without early stopping or regularization terms. Bold indicates winning values for each row. Minimizing the
loss and achieving perfect accuracy coincide only for the MDL objective.

it = σ(Wiixt + bii +Whiht−1 + bhi) (6)

ft = σ(Wifxt + bif +Whfht−1 + bhf) (7)

gt = tanh(Wigxt + big +Whght−1 + bhg) (8)

ot = σ(Wioxt + bio +Whoht−1 + bho) (9)

ct = ft ⊙ ct−1 + it ⊙ gt (10)

ht = ot ⊙ tanh(ct) (11)

where σ is the sigmoid activation and ⊙ is the
element-wise product.

In the following construction, all weights are set
to 0 unless mentioned otherwise.

The LSTM gates (sigmoids and tanh’s) need to
be saturated in order to prevent leakage and keep
the solution stable (Weiss et al., 2018). For this,
a large enough input needs to be used. We select
empirically:

LARGE = 27 − 1

which is the largest unsigned integer that fits in 7
bits (instead of, e.g., 27, in order to save bits when
using the encoding scheme from Section 3.2).

Network inputs and outputs are vectors of size 3,
with the following class positions: [#, a, b], where
is the start/end-of-sequence symbol. Inputs are
one-hot encoded, so that:

xt = [1#,1a,1b] (12)

The notation [· · ·]tanh is used as a shorthand for
tanh([· · ·]). Column vectors are printed as row
vectors and omitting the transpose for readability.

B.2 Counting

The network’s memory vector ct is of size 3. We
describe the construction that leads to ct holding
the following target values at each time step:

ct = [1, 1,#a−#b] (13)

where #a and #b represent the number of a’s and
b’s seen so far. #a −#b thus counts the number
of unmatched a’s and becomes 0 only when the a’s
and b’s are balanced. The two constant 1’s will be
used downstream.

We first set:

Wig = LARGE ·



1 0 0
1 0 0
0 1 −1




Then, from definitions (8) and (12) and because
all other weights feeding gt are 0, we get:

gt = tanh(Wigxt) = [1#,1#,1a − 1b] (14)

i.e., the last component of gt holds +1 when seeing
‘a‘ or−1 when seeing ‘b‘. 1’s are stored in the other
components when the start-of-sequence symbol
first appears.

Then, the input and forget gates are saturated
to make the addition between gt and ct−1 stable.
Saturating the gates is done through their biases in
order to save on encoding length:

bii = bif = LARGE · [1, 1, 1]

48

We write off the saturated gates from definition
(10), and get the recurrent update of the memory
vector:

ct = ct−1 + gt (15)

It is then simple to apply the recurrence and get
the correct counting targets (13) for all time steps:
(14) gives g0 = [1, 1, 0] for the first time step and
gt>0 = [0, 0,1a − 1b] for all other steps.

B.3 Hidden vector
The following construction leads to the hidden vec-
tor ht holding the following target values, repre-
senting the different phases of an anbn string:

ht = [1#,1a,1#a>#b]tanh (16)

We first construct ot as a mask vector to select
the relevant part from ct in (13) based on the current
phase of the string.

The mask ot is constructed by setting:

Wio = LARGE ·



2 0 0
0 2 0
0 0 2




bio = LARGE · [−1,−1,−1]
Since all other weights in definition (9) are 0, we
get:

ot = σ(Wioxt + bio)

Following the indexing of xt, this results in a
one-hot mask based on the current input:

ot = [1#,1a,1b]

(Wio and bio are used instead of setting Wio to the
identity because of the sigmoid in (9).)

Combined with (13) we get:

ht = ot ⊙ tanh(ct) = [1#,1a,1#a>#b]tanh
(17)

This vector is (tanh-)one-hot in all cases except
when #a = #b, in which case it zeros-out.

B.4 Output layer
The hidden vector ht is then multiplied by a linear
layer Wout. We build the values of Wout backwards
based on the optimal target probabilities.

Each anbn string has four phases: the start-of-
sequence step, the ‘a’ phase, the bm<n phase, and
the final-‘b’ phase. Each row in the following ma-
trix holds the optimal probabilities for the respec-
tive phase, based on PCFG (2):

Targets =




p 1− p 0
0 1− p p
0 0 1
1 0 0


 (18)

Since the output layer feeds a final softmax, we
build the logits backwards:

Wlog = ln(Targets+ ε)

with ε preventing taking the log of 0. Here we use
ε = (214 − 1)−1.

Since we have four states and only three com-
ponents in the hidden vector, we superimpose the
four states onto three. First, split Wlog into Wout′

which contains the first three states, and a bias bout
which contains the fourth:

Wout′ = Wlog1:3
bout = Wlog4

Then subtract to get:

Wout′′ = (Wout′ − bout)
T

The transpose is taken so that multiplying by the
one-hot ht copies columns.

Finally, divide by tanh(1) because ht is tanh-
one-hot based on (17):

Wout = Wout′′/tanh(1)

As seen in (17), ht is one-hot during all phases
except the last ‘b’, and thus copies the relevant
probability distribution from (18). Adding the bias
undoes the superimposition. ht is all-zero only
when #a = #b, in which case Wout · ht is zero.
In this case the probabilities for the fourth state
(final-b), stored in bout, are outputted.

49

Chapter 4

Large Language Models and the Argument

From the Poverty of the Stimulus (joint with

Emmanuel Chemla and Roni Katzir)

Nur Lan, Emmanuel Chemla, and Roni Katzir. 2024. Large Language Models and the Argument

From the Poverty of the Stimulus. To appear in Linguistic Inquiry.

50

Large Language Models and the Argument
From the Poverty of the Stimulus*

Nur Lan, Emmanuel Chemla, and Roni Katzir

March 2024

Abstract

How much of our linguistic knowledge is innate? According to much
of theoretical linguistics, a fair amount. One of the best-known (and most
contested) kinds of evidence for a large innate endowment is the so-called
argument from the poverty of the stimulus (APS). In a nutshell, an APS ob-
tains when human learners systematically make inductive leaps that are not
warranted by the linguistic evidence. A weakness of the APS has been that
it is very hard to assess what is warranted by the linguistic evidence. Cur-
rent Artificial Neural Networks appear to offer a handle on this challenge,
and a growing literature over the past few years has started to explore the
potential implications of such models to questions of innateness. We focus
here on Wilcox et al. (2023), who use several different networks to exam-
ine the available evidence as it pertains to wh-movement, including island
constraints. They conclude that the (presumably linguistically-neutral) net-
works acquire an adequate knowledge of wh-movement, thus undermining
an APS in this domain. We examine the evidence further, looking in partic-
ular at parasitic gaps and across-the-board movement, and argue that current
networks do not, in fact, succeed in acquiring or even adequately approxi-
mating wh-movement from training corpora that roughly correspond in size
to the linguistic input that children receive. We also show that the perfor-
mance of one of the models improves considerably when the training data

*Acknowledgments: We thank Bob Berwick, Noam Chomsky, Milica Denić, Danny Fox, Colin
Phillips, Ezer Rasin, Dominique Sportiche, Imry Ziv, and an anonymous reviewer for LI, as well
as the audience at Tel Aviv University. This project was provided with computer and storage
resources by GENCI at IDRIS thanks to the grant 2023-AD011013783R1 on the supercomputer
Jean Zay’s V100 partition.

51

are artificially enriched with instances of parasitic gaps and across-the-board
movement. This finding suggests, albeit tentatively, that the failure of the
networks when trained on natural, unenriched corpora is due to the insuffi-
cient richness of the linguistic input, thus supporting the APS.

1 Background: Innateness and the Argument From
the Poverty of the Stimulus

One way in which linguists have argued that humans are born with nontrivial
biases is through cases where speakers’ linguistic knowledge goes beyond what
seems warranted by the data they were exposed to. If humans systematically ar-
rive at this knowledge given the data while linguistically-neutral learners exposed
to similar data do not, then humans are not linguistically neutral: they come to the
task of language acquisition prepared. Reasoning of this kind is known as an ar-
gument from the poverty of the stimulus (APS), and since its introduction by Noam
Chomsky over 50 years ago it has been central to the study of the human linguis-
tic capacity.1,2 Here we will focus on one APS, concerning wh-movement, but
various other APSs have been discussed in the literature based on a range of em-
pirical phenomena such as one-substitution (introduced in Baker 1978), subject-
auxiliary inversion (introduced in Chomsky 1971), and plurals within compounds
(introduced in Gordon 1985).

The APSs just mentioned (and others like them) have been taken to argue for
nontrivial innate biases in humans. For example, the APS from subject-auxiliary
inversion has been taken to support an innate bias for hierarchical transforma-

1The general considerations behind the APS are discussed already in chapter 1 of Chomsky
1965. Further considerations are discussed in Chomsky 1971, pp. 26–8, Chomsky 1975, pp. 30ff.,
and Chomsky, 1980, pp. 42ff., as well as in much subsequent work.

In addition to the APS, linguists have also identified other sources of evidence supporting the
innateness of nontrivial linguistic knowledge. For example, there are arguments from the richness
of the stimulus, where a pattern that is clearly represented in the input data and would be easily
picked up by a linguistically-neutral learner is simply ignored by human learners. Evidence from
typological asymmetries has also played a very important role in linguistic reasoning. A proper
discussion of such sources of evidence falls outside the scope of the present paper, and in what
follows we focus exclusively on the APS.

2Throughout the discussion we set aside the question of whether the knowledge under con-
sideration is specific to linguistics (and, if so, how much of it is purely syntactic) or whether it
is shared with other cognitive domains. Our sole focus is on whether a neutral learner would be
justified in acquiring the relevant knowledge based on a given linguistic input.

52

tions over linear ones. The APS from wh-movement that we discuss below will
similarly support an intricate bias that a linguistically-neutral learner is not ex-
pected to have. The same holds for other APSs in the literature. In this, these
APSs go beyond the early observation that children can produce and understand
unboundedly many sentences after encountering only a finite number of sentences
(Chomsky 1957, p. 15). While generalizing from a finite input to an infinite lan-
guage is perhaps not entirely trivial, it is something that most learning algorithms
do. And importantly, this ability does not imply any biases that a linguistically-
neutral learner will not have.

While the APS has been central to linguistic reasoning, it has also generated
much controversy. Contesting a given APS requires challenging either the knowl-
edge attained by humans or the information available to the child learner. It is
the latter that often comes under attack. The reason for this vulnerability is that
it is extremely difficult to assess what information exactly is available to the child
over the relevant time period (often years of exposure) and hard to tell what a
general-purpose, linguistically-neutral learner would do with this kind of infor-
mation. One can try to look for pieces of evidence that seem relevant for the
knowledge at stake — e.g., as done for the case of subject-auxiliary inversion in
English by Legate and Yang (2002) — but as noted by Lewis and Elman (2001),
Perfors et al. (2011), and others, this methodology runs the risk of underestimating
the available information: even if we fail to find the evidence we are looking for,
a general-purpose learner might be able to take advantage of other sources of in-
formation. This methodology also risks overestimating the available information:
even if we find several instances of the evidence we are after, a general-purpose
learner might treat those instances as noise and fail to draw the inference that we
intuitively expect it to. In the absence of an actual learner that can use the infor-
mation that is available in an entire corpus it is just very hard to estimate whether
the data support the knowledge under consideration.3

How then can we reason about the information available to the child and ask
3See Pullum and Scholz (2002), Lidz et al. (2003), Foraker et al. (2009), Hsu and Chater

(2010), Berwick et al. (2011), Perfors et al. (2011), and Pearl and Sprouse (2013), among others,
for much relevant discussion.

In studies of analogous inductive leaps in other species, this worry regarding the input has been
addressed by controlling the information available to the learners (see, e.g., Dyer and Dickinson
1994). To a certain extent this can be done with humans in experiments of artificial-grammar
learning (see, e.g., Wilson 2006). But for the main APSs in the literature, which concern the
normal course of child language acquisition, controlling the information available to the learner is
not an option.

53

whether it suffices to support the acquisition of a given piece of knowledge by a
linguistically-neutral learner? In an ideal world, one would (a) take a sufficiently
powerful learner that can be seen to not be biased in favor of the relevant knowl-
edge; (b) train this learner on a corpus that corresponds to the linguistic input
that children receive; and (c) check whether the learner has indeed acquired the
knowledge under consideration. In such an ideal world, one might perhaps be able
to work with an induction algorithm for unrestricted (type-0) grammars, or for a
general-purpose programming language such as Python (e.g., focusing on accep-
tors, programs that accept some strings over a given alphabet and reject or enter
an infinite loop on the rest). These (equally powerful) formalisms are capable
of representing the kinds of knowledge that linguists consider but can be seen as
linguistically neutral. In our case, while both unrestricted grammars and Python
programs can easily represent the equivalent of wh-movement, including the in-
tricacies of islands, nothing about either framework seems to favor a priori such
representations. One can of course consider other representational frameworks,
including less powerful ones (e.g., context-sensitive grammars) as long as they
can still represent linguistic knowledge but are not biased in its favor. One would
still need to ensure that the learning algorithm itself does not bias the learner for
or against linguistic patterns, but this can be done in various ways, such as by
using a linguistically-neutral prior within a Bayesian learner. After training on
a developmentally-realistic corpus, corresponding to a few years of human lin-
guistic experience, the knowledge acquired by the algorithm can then be directly
inspected at stage (c).

In the actual world, combining (a) through (c) is currently impossible. For
many years, the combination of (a) and (b) was already a major barrier. General
program induction algorithms of the kind just mentioned, for example, address (a)
but fail on (b), since they are limited to very small training corpora. On the other
end of the scale, n-gram models can easily be trained on very large corpora, thus
addressing (b), but their representational capacity is much too limited to capture
or even to adequately approximate linguistic knowledge such as wh-movement.
Other models, such as probabilistic context-free grammars, fall between these
two extremes but still typically struggle with the combination of (a) and (b) when
it comes to patterns such as wh-movement.

The challenge of assessing the information available to the child has become
less of an obstacle lately, with the advent of Large Language Models (LLMs).
These models, which rely on modern architectures of artificial neural networks
(ANNs), do not yet fully address any of (a) through (c) — a matter that has been
discussed in recent literature and that we return to below — but they can be trained

54

on very large corpora and are generally quite successful in acquiring sequential
dependencies.4 This has allowed a large and growing literature to use these mod-
els to ask questions relating to the learning of linguistic knowledge by LLMs,
often with specific reference to the APS. Of particular relevance to our purposes
here is work starting with Linzen et al. (2016) and including Bernardy and Lap-
pin (2017), Chowdhury and Zamparelli (2018), Gulordava et al. (2018), Kuncoro
et al. (2018), Marvin and Linzen (2018), Wilcox et al. (2018, 2019, 2023), Bhat-
tacharya and van Schijndel (2020), Chaves (2020), Warstadt et al. (2020), Huebner
et al. (2021), Ozaki et al. (2022), and Yedetore et al. (2023), among others, that
examines the preference of LLMs within minimal pairs. Here we focus on the ap-
plication of LLMs to the domain of wh-movement, following Wilcox et al. (2018,
2019, 2023), Chowdhury and Zamparelli (2018), Bhattacharya and van Schijndel
(2020), Chaves (2020), Warstadt et al. (2020), and Ozaki et al. (2022). In par-
ticular, we examine the claim by Wilcox et al. (2023; WFL) that current models
debunk an APS in this domain: one that says that the input is insufficiently rich to
allow a general-purpose learner to acquire wh-movement.5

The present paper extends WFL’s probing of LLMs’ knowledge of wh-movement,
arriving at conclusions that are at odds with those of WFL. We start, in Section 2,
with a brief overview of the general setup for the rest of the paper. Among other
things we discuss how LLMs can be used as tools for assessing the information
in a given corpus without assuming that these models are cognitively plausible in
any way and without even asking whether these models have achieved an adequate
knowledge of the pattern under consideration.6 Rather, we treat these models as

4Long before the current models, earlier ANN architectures were used in debates of the APS,
and in particular in attempts to argue against various versions of it (see Elman et al. 1996, Lewis
and Elman 2001, and Reali and Christiansen 2005, among others, and see Berwick et al. 2011 for
a critical analysis of some earlier attempts). Early ANNs, however, were limited in their capacities
and generally trained on small corpora, and it is unclear whether they could be used to reason
about whether a corpus that roughly corresponds to children’s linguistic exposure supports the
acquisition of complex grammatical knowledge. In this sense, these earlier models were not yet
capable of addressing the combination of (a) and (b). The ability of current models to train on
realistically large corpora is a helpful step towards using them constructively in debates about the
APS.

5See Pearl and Sprouse (2013) and Phillips (2013) for earlier discussion of APS in the context
of acquiring islands.

6Our results do bear on the question of the cognitive plausibility of LLMs, however. In par-
ticular, since our results are negative they provide further evidence, if such was needed, that cur-
rent LLMs are not cognitively plausible models of human linguistic cognition, contra Piantadosi
(2023). See Katzir (2023), Kodner et al. (2023), Moro et al. (2023), and Rawski and Baumont
(2023), among others, for additional discussion.

55

proxies for future learners and ask only whether these proxies provide a reason-
able approximation of the target pattern. In Section 3 we discuss the success of
LLMs in simple cases of wh-dependencies, as noted by WFL. In Section 4 we
show that the scope of the LLMs’ success is rather limited. In particular, LLMs
fail to adequately approximate human knowledge of a much-studied family of
cases, falling under the labels of parasitic gaps and across-the-board movement,
in which certain additional gaps make an otherwise problematic gap inside an is-
land acceptable. It is cases such as these that are typically taken by linguists to
suggest an APS, and our findings show that the performance of current LLMs does
not, in fact, debunk this APS. In Section 5, we ask whether the LLMs fail only
due to their own limitations or whether their failure reflects also the insufficient
richness of their training data. We address this question by retraining one of the
models on corpora that are clearly not impoverished with respect to the relevant
patterns and showing that the performance of the model improves significantly
on the enriched corpora. This, in turn, strengthens the APS, if also tentatively.
Section 6 concludes.

2 The General Setup
Simplifying considerably, a gap, such as the missing complement of with in (1a)
and (1c), appears if and only if it is preceded by an appropriate filler, such as the
wh-phrase who in (1a) and (1b). When there is both a filler and a gap (1a) or
neither (1d) the result is good; when there is a filler and no gap (1b) or a gap and
no filler (1c) the result is bad.7

(1) a. I know who you talked with yesterday. (+filler,+gap)

b. * I know who you talked with Mary yesterday. (+filler,−gap)

c. * I know that you talked with yesterday. (−filler,+gap)

d. I know that you talked with Mary yesterday. (−filler,−gap)

There is much further nuance to wh-movement, some of which we will briefly
mention below. For now, let us consider how one might check if the input data are
rich enough for a linguistically-neutral learner to acquire the knowledge of wh-
movement. We mentioned earlier that in an ideal world, we could try to evaluate
a given APS by (a) taking a sufficiently powerful learner that can be seen to not

7In order to make it possible to alternate the±filler condition, and following WFL, we embed
the relevant examples under I know: I know who... (+filler) vs. I know that... (−filler).

56

be biased in favor of the relevant knowledge; (b) training it on a developmentally-
realistic corpus; and (c) checking whether the learner has indeed acquired the
knowledge under consideration. We also mentioned that current LLMs do not
quite handle any of (a)–(c). In the remainder of this section we will review some
of the shortcomings of LLMs with respect to each of (a)–(c) and discuss how
LLMs can still be helpful (if also inconclusive) in studying the APS.

2.1 Powerful and Unbiased?
We do not know how powerful LLMs are. Representationally, recurrent neural
networks were shown to be Turing-complete under idealized assumptions of infi-
nite precision and computation time (Siegelmann and Sontag, 1991, 1995). Under
realistic assumptions, however, the representational capacity of recurrent neural
networks is much more limited, as shown for example by Weiss et al. (2018) and
Merrill et al. (2020). A similar situation obtains with the more recent Transformer
architecture (see survey in Strobl et al., 2023). Moreover, even this limited repre-
sentational capacity of ANNs under realistic assumptions is often not attained in
practice, and there is evidence suggesting that standard training methods prevent
at least some models from acquiring key patterns (see El-Naggar et al. 2023 and
Lan et al. 2022, 2023, 2024).

Given these limitations we will avoid assuming that current models can learn
the pattern of wh-movement and only rely on their ability to provide a reason-
able approximation of the pattern. If a given ANN can reach such an approxima-
tion from a sufficiently rich corpus, we can use it as a proxy for a good general-
purpose learner, even if the ANN is not such a learner itself. We can then use
the ANN to study the APS. If the model provides a reasonable approximation of
wh-movement from a developmentally-realistic corpus, this suggests that a good
general-purpose learner could learn the correct pattern from that corpus and that
the APS in this domain does not hold. And if the model fails to reach such an
approximation this suggests that a good general-purpose learner might not learn
the correct pattern from that corpus and that the APS in this domain stands.

The use of ANNs as proxies still requires understanding how their biases re-
late to the approximations of the relevant linguistic patterns. Unfortunately, due
to how poorly these models are understood, we cannot say with any certainty
whether a given ANN is linguistically-neutral, and if not, whether its biases push
it in the direction of a given linguistic pattern. Until more is known about these bi-
ases, and as correctly cautioned by Rawski and Heinz (2019), any claims about the
neutrality of these models must be taken as tentative. Still, it strikes us as reason-

57

able to assume that current LLMs are not particularly biased against the linguistic
dependencies under consideration. This is especially so since these models have
been developed over the past decades so as to succeed in capturing key patterns in
linguistic sequences; therefore, if they do have linguistically-relevant biases after
all, those are likelier to be in favor of the patterns under consideration rather than
against them. Consequently, if the models fail to acquire an adequate approxi-
mation of the relevant dependencies, this failure can be taken to be informative.
More directly, and as mentioned above, we will show in Section 5 that with richer
training data, at least one model improves its approximation of the pattern of wh-
movement, which will suggest that the failure of the model on its original training
data is not due solely to its biases and other limitations but also to the lack of
sufficient evidence in the data.

2.2 Training on Developmentally-Realistic Corpora?
As discussed in detail by Warstadt and Bowman (2022), current models are not
trained on developmentally-realistic corpora. Such a corpus would be the equiva-
lent of the relevant input that a child receives over the first few years of their life.
But the training data for current models are more informative than the input to the
child in some ways and less informative in others. They are more informative,
for example, in that they are orders of magnitude larger than what humans are
exposed to in a whole lifetime. They are less informative in that they are purely
textual and do not reflect environmental and social cues, prosody, and input from
modalities other than speech, all of which are in principle available to children.
See Warstadt and Bowman (2022) for further discussion.

The particular pattern that we discuss here can arguably be investigated on the
basis of the information available in standard training corpora. Of course, this
is not to say that the dependencies under consideration do not depend on extra-
textual cues (a matter of ongoing discussion in the literature). But if, as WFL
suggest and as our results further support, the basic pattern of wh-movement can
be approximated based on text, there is no reason to think that the further approx-
imation of parasitic gaps and across-the-board movement will crucially require
extra-textual cues. This point will be reinforced by the evidence from retraining
in Section 5.

As to the size and quality of the text in our training data, we use a range of
corpora, reviewed immediately below, that span the spectrum from the very small
(CHILDES) through mid-size (Wikipedia) to the very large (the training sets for
GPT-2/3/j). We do so in an attempt to make up for the inadequacy of individual

58

corpora to some extent, but we acknowledge that this is at best a partial remedy.
The models we use in our evaluation are the following, also summarized

in Table 1: an LSTM and a Transformer from Yedetore et al. (2023), both of
which were trained on the CHILDES corpus of child-directed speech (MacWhin-
ney, 2014);8 an LSTM trained on English Wikipedia (Gulordava et al., 2018);
a Transformer trained on English Wikipedia;9 Open AI’s GPT-2 (Radford et al.,
2019); GPT-j (Wang and Komatsuzaki, 2021); and OpenAI’s GPT-3 (Brown et al.,
2020).10 The LSTM trained on English Wikipedia and both GPT-2 and GPT-3 are
used by WFL in their evaluation.11

In order to get a very rough sense of the number of years of linguistic ex-
perience that a given training corpus corresponds to we follow common practice
(used also by WFL) based on Hart and Risley (1995)’s estimates about the number
of words that American children typically hear during acquisition. According to
these estimates, the models just mentioned were exposed to amounts of data rang-
ing from ten months of linguistic experience (CHILDES LSTM and Transformer)

8The models in Yedetore et al. (2023) were trained on utterances of 52 children between the
ages of six months to 12 years, from the North American English subset of the CHILDES cor-
pus. The total training size amounts to 9.6 million words, which is considerably less than what
children typically receive by the time they exhibit knowledge of the pattern under consideration
here. Qualitatively, on the other hand, this training corpus is arguably more realistic than the much
larger training corpora used for the remaining models.

Out of ten models per architecture (LSTM/Transformer) trained in Yedetore et al. (2023) with
different random seeds, we use the model with the best test perplexity.

9We added this Transformer since we wanted to evaluate the information in the English
Wikipedia training corpus (the most realistic developmentally in terms of size of all the train-
ing corpora under consideration) using a more current architecture than the LSTM that WFL use.
We used one of the large Transformer architectures used in Yedetore et al., 2023: 8 layers, hidden
and embedding size 1600, and 16 attention heads, trained using the same training regime. Since
the current task is limited to single sentences, we lowered the Transformer’s context size to 30
(compared to 500 in Yedetore et al. 2023), closer to the average sentence size in the Wikipedia
dataset (27.2).

10Model version text-davinci-003, the latest supported version not fine-tuned us-
ing reinforcement learning from human feedback (RLHF) for chat and other applica-
tions; however, the model is still trained with supervised fine-tuning, and it is propri-
etary. See https://archive.today/2023.10.07-060351/https://platform.
openai.com/docs/models/gpt-3-5 for OpenAI’s documentation retrieved October 2023
(archived snapshot).

11WFL also use another LSTM, from Jozefowicz et al. (2016). We chose not to include that
model in our evaluation since it is extremely slow to work with. For WFL’s evaluation, which
used a small number of sentences, this was not a problem, but our evaluation relied on a much
larger number of sentences, making Jozefowicz et al. (2016)’s model impracticable.

59

Model ∼Tokens in training data ∼Human equivalent
CHILDES LSTM
(Yedetore et al., 2023)

8.6 million 10 months

CHILDES Transformer
(Yedetore et al., 2023)
Wikipedia LSTM
(Gulordava et al., 2018)

90 million 8 years

Wikipedia Transformer
GPT-2 (Radford et al.,
2019)

8 billion 730 years

GPT-3 (Brown et al.,
2020)

114 billion 10,300 years

GPT-j (Wang and
Komatsuzaki, 2021)

402 billion 36,540 years

Table 1: Training data size of the seven language models considered here, and
the human linguistic experience equivalent to these data sizes; human equivalents
follow WFL (based on Hart and Risley 1995) who assume a daily exposure to
∼30,000 words by children, or around 11 million words per year.

through eight years of linguistic experience (Wikipedia LSTM and Transformer)
to between 10 and 500 human lifetimes (GPT-2, GPT-3, and GPT-j); see Table 1.
WFL note that the linguistic experience of some of the models is well above that
of children in terms of size and could thus weaken their argument against the APS
in case of successful learning by the models. However, in the case of a negative
result, as in the current work, a large training corpus only makes failures to learn
more informative.

2.3 Inspecting LLM Knowledge?
As mentioned, LLMs are very opaque. While symbolic models such as context-
free grammars (whether probabilistic or not) can generally be inspected directly
so as to reason about the knowledge that they incorporate, inspecting LLMs in a
similar fashion is not currently possible. One might try to follow standard prac-
tice in linguistics and study the knowledge of LLMs from the outside, by exam-
ining which sentences they accept. We could then check, for example, whether
a particular LLM believes that a given continuation such as yesterday or Mary is

60

grammatical following a given prefix such as I know who/that you talked with in
(1) above. Unfortunately, however, we cannot currently check whether an LLM
takes a given sentence to be grammatical. In fact, it is not clear whether current
models even have a notion of grammaticality to begin with.

What LLMs do tell us is how likely they consider any given continuation. The
problem is that grammaticality and probability are generally very different no-
tions. And while the two are correlated — many ungrammatical continuations
are also unlikely on any sensible notion of probability, and grammatical continua-
tions are sometimes probable — this correlation is far from perfect (see Chomsky
1957, Berwick 2018, and Sprouse et al. 2018, among others, for relevant dis-
cussion). In particular, many grammatical continuations are highly unlikely; for
example, splat is a grammatical but unlikely continuation of John would like to eat
a freshly-made. And in some cases an ungrammatical continuation can be likely;
for example, is is a likely but ungrammatical continuation of The keys to the cabi-
net, an instance of so-called agreement attraction (see, e.g., Bock and Miller 1991
and Wagers et al. 2009).12

In the cases we are interested in here, however, probability and grammaticality
are often quite well aligned, and — as in many other cases discussed in the liter-
ature mentioned earlier on evaluating LLMs on minimal pairs — it is easy to find
examples such as (1) in which the grammatical continuation is significantly more
probable than the ungrammatical one on any sensible notion of probability. So if
we focus on such cases where grammaticality and probability are aligned, and if
ANNs are sufficiently good learning models — at least, good enough to provide
a crude approximation of the pattern under consideration — then we can use the
probabilistic predictions of the resulting LLMs to evaluate the APS by comparing
their probability assignments within minimal pairs. If a given LLM systematically
assigns a much higher probability to the grammatical continuation, one potential
explanation for this success is that the pattern of wh-movement is represented suf-
ficiently well in the model’s training data for the model to approximate it. While
it remains unclear, as mentioned above, whether current ANNs themselves have a
representation of grammaticality as distinct from probability or whether they can
learn the true pattern, their success when trained on developmentally-realistic cor-

12Agreement attraction is a performance error. Speakers make such errors when distracted or
in a hurry but less so when given more time. ANNs do not make this distinction: when they give
a higher probability to an ungrammatical continuation their response reflects a faulty knowledge
rather than a resource problem. This serves to further illustrate the inadequacy of ANNs as models
of linguistic cognition but does not pose a problem for our use of these models as a tool for
assessing the informativeness of the input data.

61

pora would suggest that a good linguistically-neutral learner that does have such
representational abilities might acquire the pattern. Conversely, if the LLM does
not systematically assign a much higher probability to the grammatical continua-
tion, one possible explanation for this failure is that the pattern of wh-movement
is not sufficiently well represented in the input data to merit its approximation by
the model. This, in turn, would suggest that a good linguistically-neutral learner
will not acquire the pattern from the input data. In this way, LLMs — even if their
representational inadequacies prevent them from providing more than a crude ap-
proximation of the pattern under consideration — can serve as useful proxies for
future general-purpose learners and help us reason about the information available
in the input data.

Care is needed in interpreting the performance of the models, even when
treated as proxies for future learners. As Kodner and Gupta (2020) and Vázquez Martı́nez
et al. (2023) note, clearly inadequate models can still pass current benchmarks of
minimal pairs. More generally, it is possible for a model to either succeed by ac-
cident or fail by accident. As we discuss below, and in line with recent literature,
we will try to lessen the worry of uninformative success or failure: in addition to
using a wide range of models trained on many different corpora, as already men-
tioned above, we will also vary the lexical choices within our minimal pairs and
also control to some extent for very local preferences that the models might have
and that could obscure their approximation of the pattern of wh-movement. But
these remain partial remedies, and any positive conclusions from the evaluation
must be qualified accordingly. This worry does not affect our argument against
WFL’s conclusions: in this case, WFL make the positive claim that LLMs refute
the APS, and we show (in section 4) that current LLMs provide no basis for such
a conclusion. But the worry does affect our attempt (in section 5) to show that
LLMs strengthen the APS. While we try to make the case that the failure of at
least one of the models reflects the poverty of the stimulus, our conclusions in this
part must remain tentative.

3 LLMs Succeed in Very Simple Cases of wh-movement
How rich is the input, then, when it comes to filler-gap dependencies of the wh
kind? In very simple cases such as (1) above, the LLMs considered by WFL assign
a higher probability to the grammatical continuation than to the ungrammatical
one. Above we mentioned that success in cases such as those considered here,
where probability and acceptability are aligned, should involve not just a higher

62

probability to the grammatical continuation but a much higher one. However, in
order to give the models a better chance of refuting the APS, we will adopt a
very lenient criterion for success and only ask if the probability assigned to the
grammatical continuation is higher than that assigned to the ungrammatical one,
without taking into account how much higher it is. This will allow a network
to be considered successful even if it prefers the grammatical continuation by
the slightest of margins. This lenient condition for success will strengthen our
conclusions from cases of failure, which we get to in the sections below: if a
network fails even with this lenient condition of success, this failure can be taken
seriously.

Here and below we will follow WFL (and the psycholinguistic literature that
they build on) and illustrate using surprisal values, where the surprisal of x is
− logP (x), which is simply the negative of the logarithmically-scaled probability
of x.13 The lower the probability the higher the surprisal; when the probability ap-
proaches 0 the surprisal tends to infinity, and as the probability approaches 1 the
surprisal tends to 0. Since higher probability corresponds to lower surprisal, sup-
port for the model will come from its assigning lower surprisal to a grammatical
continuation than to an ungrammatical one, which, as mentioned, is what WFL
indeed find in simple cases.

Figure 1 illustrates the preference of the models considered here for the gram-
matical continuation over the ungrammatical one in a very simple case by plotting
surprisal values for sentences (1a) and (1b). All models assign a lower surprisal
value (i.e., a higher probability) to the grammatical continuation yesterday in the
gapped sentence than to Mary. This suggests (albeit weakly) that the input is suf-
ficiently rich for a general-purpose learner to acquire from it an approximation of
some basic aspects of wh-movement.

WFL further suggest that the LLMs go beyond the basic knowledge that fillers
and gaps go hand in hand. Specifically, they claim that LLMs are aware of islands
(Ross, 1967): configurations in which a gap is bad even if there is a filler upstream.
We illustrate this with the following:

(2) * I know who [[the question whether jumped] surprised Mary yester-
day].

13WFL’s methodology includes looking not just at +filler cases, as in (1a) and (1b), but also at
the corresponding−filler ones, as in (1c) and (1d). We will follow WFL in this in our discussion
in sections 4.3 and 5 below, but for the present we will attempt to keep the presentation simple by
considering only +filler pairs.

63

Figure 1: Raw surprisal values outputted by the LLMs for the grammatical (1a),
in blue, and ungrammatical (1b), in orange. All models correctly output lower
surprisal values for the grammatical continuation.

While, as discussed above, a filler upstream generally increases the LLMs’
expectation of a gap downstream, this expectation should be reduced within the
subject of the embedded clause in (2). This subject is an island to movement, and
extraction from within it is unacceptable and presumably highly unlikely. Figure 2
shows that the models are indeed surprised by the gap in (2), suggesting that their
training corpora are informative with respect to this aspect of wh-movement.14

WFL consider a range of similar cases and conclude that linguistically-neutral

14The literature discusses various cases in which extraction from subjects (and other islands) is
judged acceptable by speakers. Here and below we focus on relatively simple examples in which
speaker judgments are clear, and our evaluation will concern the extent to which LLM preferences
approximate these clear speaker judgments.

64

Figure 2: Raw surprisal values for the island violation sentence in (2), in blue,
and a variant of the sentence with no island violation (we use John instead of the
island-internal gap), in orange. All models are correctly surprised to find a gap
within the island. Note that since the variant with John has no downstream gap that
would correspond to the upstream filler, it is ungrammatical. For a grammatical
version one could replace Mary with a gap. This matter, however, is orthogonal
to the surprisal at the island-internal gap, which is what this figure illustrates.

learners can acquire the intricacies of wh-movement from the input data and that
consequently the APS in this domain falls apart.

65

4 LLMs Fail on Slightly More Complex (But Still
Simple) Cases of wh-movement

We now turn to a well-studied nuance of islands: in various cases, an otherwise
impossible gap inside an island is made possible by a separate gap elsewhere. For
example, while (3a), with a subject-internal gap, is bad, its counterpart in (3b),
which has an added gap in the direct-object position of the main clause, is good.
This phenomenon is known as a parasitic gap (PG): the gap inside the subject
island becomes acceptable parasitically, based on the direct-object gap.15

(3) a. * I know who [John’s talking to] is going to annoy you soon.
b. I know who [John’s talking to] is going to annoy soon.

Somewhat similarly, while (4a), with a gap inside a conjunct, is bad, its coun-
terpart in (4b), where there is a gap in the other conjunct as well, is good. This
phenomenon is known as across-the-board movement (ATB).16

(4) a. * I know who John [met recently] and [is going to annoy you
soon].

b. I know who John [met recently] and [is going to annoy soon].

4.1 An Initial Failure
Do LLMs approximate the patterns of PG and ATB? Both Wilcox et al. (2018)
and Chaves (2020) mention PG and ATB in passing, but we are not familiar with
attempts in the literature to evaluate the success of LLMs in approximating these
patterns. Figures 3-4 illustrate that all the LLMs that we are considering here
fail on (3a) and (4a), even on our very lenient condition of success: they do not
just fail to assign a much higher probability to the grammatical continuation over
the ungrammatical one in this simple case; they actually prefer the ungrammati-
cal continuation. This seems to indicate that the ANNs have failed to acquire a
good approximation of the relevant constructions, which in turn challenges WFL’s

15Not all impossible gaps can be rescued in this way. For example, adding further gaps does
little to improve (2) above.

16We set aside the important question of what stands behind PGs and ATB and whether the two
are related. See Ross (1967), Williams (1977, 1990), Engdahl (1983), Haı̈k (1985), Munn (1992),
Postal (1993), Fox (2000), Nissenbaum (2000), and Hornstein and Nunes (2002), among others,
for discussion.

66

Figure 3: Raw surprisal values for the ungrammatical sentence (3a) which violates
a subject island, in orange, and its grammatical variant (3b), in blue, where a
parasitic gap makes it possible to escape the island. For measuring the model’s
expectation for a gap, surprisal is measured at the adverb soon, which indicates
a gap. This is compared with surprisal at John which plugs the gap at the same
position. All networks wrongly assign a higher surprisal value to the grammatical
continuation.

claim that LLMs undo the APS in this domain: for LLMs to undo this APS, they
would need to provide a passable approximation of PG and ATB, but their perfor-
mance above does not suggest such an approximation.

If our entire empirical basis is the failure we just saw, however, our conclusions
will remain weak. This is so for the following reason: while the behavior of a good
linguistically-neutral learner on the examples above would indeed be informative
about the APS, it is possible that current ANNs are simply not sufficiently good

67

Figure 4: Raw surprisal values for the ungrammatical sentence (4a) which vio-
lates the coordinate structure constraint (orange), and its grammatical variant (4b)
where ATB movement makes it possible to avoid the constraint (blue). All net-
works wrongly assign a higher surprisal value to the grammatical continuation
soon rather than to John.

learners in this regard, and the inadequacies of the ANNs can in turn significantly
limit our conclusions.

In the remainder of the present section we attempt to address the general con-
cern about the adequacy of the ANNs, which we break down into two separate
investigations. We first ask whether the failure that we just saw is an accident
of the particular lexical choices that we used (Section 4.2). We then ask, build-
ing on WFL’s methodology, whether the failure was due to a general preference
for ungapped continuations that is so strong as to override a preference for the
correct form (Section 4.3). Our investigations concern ways in which the LLMs

68

might have an approximation of PG and ATB that is obscured by weaknesses of
the models. By helping these LLMs at test we aim to reveal this approximation
if it exists, but in both sections we will fail to find evidence for it. This, in turn,
will strengthen the challenge to WFL’s claim: even with additional help at test,
the models show no evidence that might undermine the APS.

4.2 Lexical Accident?
Our illustration above of how the LLMs prefer the ungrammatical continuation
over the grammatical one for ATB and PG used one pair of sentences for each of
the two patterns. This raises the obvious worry that the failure of the LLMs reflects
some accidents of the specific sentences that we used. This worry is lessened
to some extent by the fact that we looked at a broad range of different models
trained on different corpora: it seems unlikely that all these models and all these
training corpora just happen to have the same blind spot when it comes to the
specific sentences that we used above and that otherwise the models approximate
the patterns well. Still, it is clearly useful to examine more systematically what
happens when we vary the lexical choices for the two patterns.

In order to test the performance of the networks on PG and ATB sentences
more broadly, we systematically varied the lexical choices in (3) and (4), repeated
here.

(5) a. * I know who [John’s talking to] is going to annoy you soon.
b. I know who [John’s talking to] is going to annoy soon.

(6) a. * I know who John [met recently] and [is going to annoy you
soon].

b. I know who John [met recently] and [is going to annoy soon].

We generated the sentences by template, using simple context-free grammars.
Excerpts from these grammars and a sample of the generated sentences are given
in Tables 2 and 3. The full grammars are given in Appendix A.17 8,064 sentence
tuples were generated for PG and 6,624 for ATB. For a given model and a given
pair of sentences, we looked at the surprisal of the model at the critical point on
each member of the pair. For (5), for example, we checked whether after the
shared prefix I know who [John’s talking to] is going to annoy . . . surprisal

17All experimental material and the source code are available at https://github.com/
0xnurl/llm-poverty-of-stimulus.

69

Figure 5: Model accuracy on the ∆+filler condition for the PG and ATB
datasets. Accuracy is measured as the ratio of cases where the model assigns a
higher probability to the grammatical sentence continuation.

was higher at the ungapped, ungrammatical continuation you as in (5a) than in the
gapped, grammatical continuation soon as in (5b). If it was — and in line with
our lenient condition for success that is satisfied by any kind of preference for the
grammatical continuation regardless of its magnitude — this counted as a success.
We will write ∆ = Surprisal(ungapped continuation|shared prefix)−Surprisal(gapped
continuation|shared prefix), and we will write ∆+filler to indicate that the shared
prefix has an upstream filler. Using this notation, we can write the condition for
success as ∆+filler > 0.

Figure 5 plots the results of examining ∆+filler preferences for the PG and
ATB datasets. In both cases, the best performance by a large margin is that of

70

GPT-3, with 40.9% accuracy on the PG dataset and 71.6% accuracy on the ATB
dataset. We are not sure to what extent these numbers can be taken to indicate
an approximation of the relevant patterns by GPT-3. If it is a success then it is
hardly a striking one. Nor is it particularly informative: recall that GPT-3 has been
trained on the equivalent of 10,000 years of linguistic experience (and is also fur-
ther improved manually in various ways), so even if it approximates the relevant
patterns, this does not indicate that a general-purpose learner would acquire the
relevant knowledge from a developmentally-realistic corpus of just a few years
of linguistic experience. Setting GPT-3 aside, the models perform very poorly,
with the best performance on PG being Wikipedia LSTM’s 18.1% accuracy and
the best performance on ATB being CHILDES Transformer’s 30.1% accuracy. In
other words, the models do not just fail to prefer the grammatical continuation
over the ungrammatical one, they positively prefer the ungrammatical continua-
tion in the vast majority of the pairs. Helping the LLMs by testing them on a wide
range of lexical choices, then, fails to reveal any evidence that the models have
approximated the patterns of parasitic gaps and across-the-board movement.

4.3 A Preference for Ungapped Continuations?
Our second investigation, building on WFL’s methodology, asks whether the net-
works have a local preference for or against gapped continuations that might make
them succeed or fail for the wrong reasons.

Consider again (5) (=I know who [John’s talking to] is going to annoy
*you/✓ soon). A sufficiently strong local preference about the critical area can
affect a given ANN’s success regardless of whether it has acquired any approxi-
mation of PG, or of wh-movement in general. It could be, for example, that the
ANN assigns a higher probability to the grammatical continuation soon than to the
ungrammatical you but that it does so because it ignores the filler (who) altogether
and simply prefers annoy soon to annoy you. Conversely, it is conceivable that
the ANN has, in fact, acquired knowledge of wh-movement but that it incorrectly
prefers you to soon because of similarly irrelevant reasons. For example, perhaps
it has a strong preference for ungapped continuations in general, or perhaps it has
such a preference in the present case because the lexical frequency of you is very
high.

To what extent might such local preferences affect the ANNs? We are not
entirely sure. A good enough learner would presumably not get confused by such
irrelevant factors, and the fact that all our models perform well on very simple
filler-gap dependencies illustrated in Figures 1 and 2 is at least suggestive of their

71

ability to overcome any such confusion when the training data are sufficiently
rich. However, beyond this suggestive evidence it is hard to tell whether current
ANNs are good enough learners in this sense, and it strikes us as reasonable to
further investigate possible confusion by irrelevant factors that might override the
preference for the correct pattern.

Following WFL, we will explore the possible effect of irrelevant factors of the
kind just mentioned by looking at each LLM’s preference for gapped over un-
gapped continuations and comparing this preference when there is an upstream
filler and when there is no such filler. When an upstream filler is present, the
model’s preference for a gapped continuation (e.g., annoy soon) over the un-
gapped continuation (annoy you) should be stronger than when an upstream filler
is absent. In other words, we will be looking at whole paradigms of the shape we
already saw in (1) and not just at those portions of the paradigm in which a filler
is present. Such a paradigm is illustrated for PG in (7) and for ATB in (8). Un-
derlined words indicate the±filler alternations. Words in bold indicate the critical
region that shows whether the continuation is gapped or not.

(7) PG
+gap −gap

+filler I know who John’s talking to
is going to annoy soon.

*I know who John’s talk-
ing to is going to annoy you
soon.

−filler *I know that John’s talking
to Mary is going to annoy
soon.

I know that John’s talking to
Mary is going to annoy you
soon.

(8) ATB
+gap −gap

+filler I know who John met re-
cently and is going to annoy
soon.

*I know who John met re-
cently and is going to annoy
you soon.

−filler *I know that John met Bob
recently and is going to an-
noy soon.

I know that John met Bob re-
cently and is going to annoy
you soon.

Extending our lenient condition for success used above, we will now con-
sider it a success for a given model on a particular paradigm if its preference for
the gapped continuation (regardless of its absolute magnitude or even its sign) is
higher in the presence of an upstream filler than in its absence. Above we intro-
duced the notation ∆ = Surprisal(ungapped continuation|shared prefix)−Surprisal(gapped

72

continuation|shared prefix) for the extent of the preference for the gapped contin-
uation over the ungapped continuation, and we wrote ∆+filler when the shared
prefix had an upstream filler. We will now consider also the analogous ∆−filler,
for the part of the paradigm where the shared prefix does not have an upstairs filler.
And we will consider it a success for the model if ∆+filler > ∆−filler. This lenient
condition of cross-paradigm success follows the logic of difference-in-differences
and is very much in line with WFL’s evaluation.18

In order to test the models across a large number of paradigms, with many
different lexical choices, we used the same grammars mentioned in the previous
section. In our earlier discussion we used the +filler pairs generated by the
grammar. In the present section we use also the corresponding −filler pairs, and
from each paradigm of +filler and −filler pairs we compute ∆±filler values.
Excerpts from the grammars are provided in Table 2 (for PGs) and Table 3 (for
ATB).

Figure 6 plots the LLMs’ performance for the cross-paradigm (difference-in-
differences) condition. All models except CHILDES LSTM have higher scores
for the present measure of ∆+filler > ∆−filler than they did for the earlier measure
of ∆+filler > 0 (Figure 5), and this holds for both PG and ATB. However, we can
see that only GPT-j and GPT-3 obtain scores that are convincingly high. But
GPT-j is trained on the equivalent of 500 lifetimes of human linguistic exposure,
and GPT-3 is trained on the equivalent of 100 lifetimes and fine-tuned further
on downstream language tasks. Even GPT-2, trained on the equivalent of ten
lifetimes — and thus two orders of magnitude at least above what a child hears
by the time they have knowledge of PG and ATB — only reaches modest scores,
below 80%. And the smaller models obtain much lower scores. This includes the
English Wikipedia LSTM and Transformer, whose training corpus corresponds to
about 8 years of linguistic exposure, arguably the most realistic developmentally
in terms of size of all the models.

The gradual improvement of LLM scores as the corpora become very large
suggests that current models are in principle capable of improving their approx-
imation of the pattern of wh-movement, but also that this improvement requires
much more information than what is present in a corpus that corresponds to any-
thing a child might encounter. We return to the potential of richer training data to
improve an LLMs approximation of the patterns under consideration in the next

18Of course, this new criterion still allows for various irrelevant factors to affect success. For
example, a model could become successful simply by deciding that who corresponds to a high
probability for soon and a low probability for you anywhere in the sentence and that that corre-
sponds to the opposite. We set aside such worries here.

73

PG Grammar

S → ⟨PREAMBLE⟩ ⟨±F ⟩ ⟨±G⟩
⟨PREAMBLE⟩ → I know
⟨+F ⟩ → who ⟨NAME1⟩⟨GEN⟩ ⟨NP ⟩
⟨−F ⟩ → that ⟨NAME1⟩⟨GEN⟩ ⟨NP ⟩ ⟨NAME2⟩
⟨+G⟩ → ⟨LINK⟩ ⟨V ⟩ ⟨ADV⟩
⟨−G⟩ → ⟨LINK⟩ ⟨V ⟩ ⟨OBJ⟩ ⟨ADV ⟩
⟨GEN⟩ → ’s
⟨NP ⟩ → ⟨NP SIMPLE⟩ | ⟨NP COMPLEX⟩
⟨NP SIMPLE⟩ → ⟨GERUND⟩
⟨NP COMPLEX⟩ → ⟨N EMBEDDED⟩ ‘to’ ⟨V EMBEDDED⟩
⟨LINK⟩ → ‘is about to’ | ‘is likely to’ | ‘is going to’ | ‘is expected to’
⟨V ⟩ → ‘bother’ | ‘annoy’ | ‘disturb’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨GERUND⟩ → ‘talking to’ | ‘dancing with’ | ‘playing with’
⟨N EMBEDDED⟩ → ‘decision’ | ‘intent’ | ‘effort’ | ‘attempt’ | ‘failure’
⟨V EMBEDDED⟩ → ‘talk to’ | ‘call’ | ‘meet’ | ‘dance with’ | ‘play with’
⟨ADV ⟩ → ‘soon’ | ‘eventually’
· · ·
⇒ I know who John’s talking to is going to annoy soon. (+filler,+gap)

⇒ * I know who John’s talking to is going to annoy you soon. (+filler,−gap)

⇒ * I know that John’s talking to Mary is going to annoy soon. (−filler,+gap)

⇒ I know that John’s talking to Mary is going to annoy you soon. (−filler,−gap)

Table 2: Excerpt from the context-free grammar used to generate PG sentences for
the experiments in Section 4.3, and sample sentences generated from it. Under-
lined words alternate according to the ±filler condition; words in bold mark the
position where the ±gap condition becomes evident and surprisal is measured.

section. In the meantime we conclude that even with considerable help at test, the
performance of the LLMs provides no evidence against the APS.

74

ATB Grammar

S → ⟨PREAMBLE⟩ ⟨±F ⟩ ⟨LINK⟩ ⟨±G⟩
⟨PREAMBLE⟩ → I know
⟨+F ⟩ → who ⟨NAME1⟩ ⟨V P1⟩ ⟨ADV 1⟩
⟨−F ⟩ → that ⟨NAME1⟩ ⟨V P1⟩ ⟨NAME2⟩ ⟨ADV 1⟩
⟨+G⟩ → ⟨LINK⟩ ⟨V P2⟩ ⟨ADV2⟩
⟨−G⟩ → ⟨LINK⟩ ⟨V P2⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨LINK⟩ → ‘and is going to’
⟨ADV 1⟩ → ‘recently’ | ‘lately’
⟨ADV 2⟩ → ‘soon’ | ‘today’ | ‘now’
⟨V P1⟩ → ⟨V P1 SIMPLE⟩ | ⟨V P1 COMPLEX⟩
⟨V P1 SIMPLE⟩ → ‘met’ | ‘saw’
⟨V P2⟩ → ⟨V P2 SIMPLE⟩ | ⟨V P2 COMPLEX⟩
⟨V P2 SIMPLE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
· · ·
⇒ I know who John met recently and is going to hug soon. (+filler,+gap)

⇒ *I know who John met recently and is going to hug you soon. (+filler,−gap)

⇒ *I know that John met Bob recently and is going to hug soon. (−filler,+gap)

⇒ I know that John met Bob recently and is going to hug you soon. (−filler,−gap)

Table 3: Excerpt from the context-free grammar used to generate ATB sentences
for the experiments in Section 4.3, and sample sentences generated from it. Un-
derlined words alternate according to the ±filler condition; words in bold mark
the position where the±gap condition becomes evident and surprisal is measured.

5 A General Inability to Acquire a Suitable Prefer-
ence?

Recall WFL’s contention that LLMs show that a linguistically-neutral learner can
acquire knowledge of wh-movement from a realistic corpus. In the face of our
results from the previous section, WFL’s claim needs to be abandoned: current
LLMs provide no basis for such a conclusion. Of course, this is not the same as
saying that LLMs provide evidence for the APS: the failure of the LLMs might be

75

Figure 6: Model accuracy on the difference-in-differences condition for the PG
and ATB datasets. Accuracy is measured as the ratio of cases where ∆+filler >
∆−filler, that is, when the model shows a relative higher preference for a gap
when the gap follows a filler than when it does not.

due entirely to their own limitations and not be informative about the richness of
the training corpora. In the present section, however, we will go one step further
and provide tentative evidence that the failure of the LLMs is due also to the insuf-
ficient richness of the training corpora and not just to weaknesses of the ANNs.
We do so by helping one of our models at training: we retrain the Wikipedia
Transformer model on an enriched corpus that includes multiple instances of PG
and ATB. As we show, the performance of the model improves significantly on
the enriched corpus, suggesting that the failure on the original corpus reflects the
poverty of that corpus.

76

The additional instances for the enriched training corpus are generated by tem-
plate, using a variant of the CFGs that we used in sections 4.2 and 4.3. To increase
the probability that an improved performance by the model will reflect general-
ization rather than memorization, the structure of the additional instances is dif-
ferent from that of the test sentences from Section 4.3. Specifically, we made the
additional sentences slightly simpler than the test sentences, focusing on the tran-
sitive verb whose object position forms the second gap (the main gap in the PG
examples and the second-conjunct gap in the ATB examples): while in the test
sentences the relevant transitive verb is always embedded under at least a raising
predicate (e.g., likely) and sometimes under additional clauses, in the additional
training sentences such embedding is absent. Example training and test sentences
are given in Table 4. The full CFGs used in creating the additional instances are
given in Appendix C.

From each CFG of each phenomenon (PG/ATB), we sampled 100 sentences
for the two grammatical conditions (+filler,+gap and −filler,−gap), total-
ing 200 extra sentences. These sentences were added to the original English
Wikipedia dataset, and the model was trained using the same regime as in Yedetore
et al. (2023) (itself based on the training regime in Gulordava et al., 2018). The
model was trained for 48 hours or until reaching the early-stop condition from
Yedetore et al. (2023) which stops the training if the validation loss does not im-
prove for more than two consecutive epochs. Due to the long training times of the
model, the results reported here are for one random seed with no hyper-parameter
search. Since the goal of this experiment was to demonstrate the model’s ability
to improve significantly given more data, this was sufficient.

The model’s performance on the training and test set, before and after retrain-
ing, is visualized in Figure 7.

For both ATB and PG the performance of the model improves significantly.
For ATB, the raw ∆+filler > 0 accuracy score improves from 13.7% to 35.8%,
and the difference-in-differences ∆+filler > ∆−filler score improves from 56.7%
to 97.2%. This is a dramatic improvement over the performance of the model on
its original corpus and is higher than the performance of other architectures when
trained on a much larger corpus. For PG, the raw score improves modestly, from
1.3% to 5.3%, while the difference-in-differences score improves from 14.4% to
65.5%. The raw score for PG certainly doesn’t inspire confidence that the model
has acquired the dependency. Recall, however, that this is not what we were after
here. Our question was whether the model is so weak that its poor performance
when trained on the original corpus reflects its inability to do better. The retrain-
ing results show that the model can do considerably better once the corpus is

77

Figure 7: Accuracy for the retrained Transformer model, when trained on the
original Wikipedia vs. when trained on the same dataset with extra PG and ATB
sentences. The left figures plot accuracy for the +filler condition, and the right
figures plot accuracy for the difference-in-difference condition.

78

PG

Training Examples
• I know who John’s attitude towards upset yesterday.
• I know who John’s friendship with will annoy soon.
• I know who John’s praising of amused lately.
Test Examples
• I know who John’s talking to is about to bother soon.
• I know who John’s playing with is going to annoy eventually.
• I know who John’s failure to dance with is going to disturb soon.

ATB

Training Examples
• I know who John saw yesterday and kissed today.
• I know who John helped recently and married today.
• I know who John hugged often and will insult soon.
Test Examples
• I know who John met recently and is going to complain to
Patricia about soon.
• I know who John said that Mary saw lately and is going to be
glad to hug now.
• I know who John asked Mary about lately and is going to claim
that Patricia will hug today.

Table 4: Example training and test sentences for the retraining task in Section 5.
A sample of simplified training PG and ATB sentences are added to the model’s
original training data (English Wikipedia), and the model is then tested on the full
battery of sentences from Section 4.3. The full CFGs for the training and test
datasets are given in Appendices A and C.

sufficiently rich.
Caution is required in interpreting this result. Like all current LLMs, our

model is opaque, and we are limited in the conclusions that we can draw from
it. In particular, while we observe that the model’s performance improved when
retrained on a corpus that is enriched in a certain way, it is possible that there are
other kinds of evidence for the patterns under consideration that a good general-
purpose learner would be able to make use of and that our model cannot. What
we found is consistent with such evidence being in the original corpus. Our use
of retraining data that were structurally different from the test data was aimed
at lessening this worry, since improvement suggests an ability to generalize and
not just memorize. This, in turn, increases the plausibility that the model would

79

have been able to generalize from other kinds of relevant examples if the original
corpus had been sufficiently rich. But the opacity of the model prevents us from
saying more, and our results here must be qualified accordingly.

6 Conclusion
The APS has been central to linguists’ reasoning about innateness for a long time.
It has always been difficult, however, to estimate just how much information a
linguistically-neutral learner might hope to extract from a realistic input. Modern
ANNs promise to change this, and their linguistic knowledge and learning have
been the topic of research of a growing literature. We focused here on WFL,
who use LLMs to argue that the stimulus is rich enough when it comes to wh-
movement and that this dismantles the APS in this domain. We showed that this
conclusion is premature: by looking at parasitic gaps and across-the-board move-
ment we showed that several ANNs fail to reach a passable approximation of the
pattern of wh-movement.

Is it possible that some future linguistically-neutral learner will succeed where
the models that we have examined have failed? Of course. As we mentioned,
current models are too opaque and too poorly understood (and current training
corpora are too unrealistic developmentally) to definitively settle the question of
whether the APS for wh-movement holds. We note, however, that the architec-
tures we have considered are generally successful in approximating many other
aspects of linguistic data and that we evaluated the models using an extremely le-
nient criterion for success. And some of the models have been provided with very
generous amounts of linguistic input, in some cases several orders of magnitude
beyond what children receive. Given that none of the ANNs reached an adequate
approximation of the pattern for the relatively simple examples that we have con-
sidered — and given that at least one network did seem capable of improving its
approximation when retrained on a clearly rich corpus — we find it likelier that
the stimulus is simply too poor to warrant the acquisition of the relevant aspects
of knowledge from a corpus that is even remotely realistic developmentally by a
linguistically-neutral learner. And if that turns out to be the case, adult speakers’
knowledge of these aspects is evidence that children are innately endowed in ways
that are not linguistically neutral.

80

References
Baker, C. L. 1978. Introduction to generative transformational syntax. Englewood

Cliffs, New Jersey: Prentice-Hall.
Bernardy, Jean-Philippe, and Shalom Lappin. 2017. Using deep neural networks

to learn syntactic agreement. LiLT (Linguistic Issues in Language Technology)
15.

Berwick, Robert C. 2018. Revolutionary new ideas appear infrequently. In Syn-
tactic Structures after 60 years: The impact of the Chomskyan revolution in lin-
guistics, ed. Norbert Hornstein, Howard Lasnik, Pritty Patel-Grosz, and Charles
Yang, volume 60, 177–194. Walter de Gruyter.

Berwick, Robert C., Paul Pietroski, Beracah Yankama, and Noam Chomsky. 2011.
Poverty of the stimulus revisited. Cognitive Science 35:1207–1242.

Bhattacharya, Debasmita, and Marten van Schijndel. 2020. Filler-gaps that neural
networks fail to generalize. In Proceedings of the 24th Conference on Com-
putational Natural Language Learning, ed. Raquel Fernández and Tal Linzen,
486–495. Online: Association for Computational Linguistics.

Bock, Kathryn, and Carol A Miller. 1991. Broken agreement. Cognitive Psychol-
ogy 23:45–93.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, and
Amanda Askell. 2020. Language models are few-shot learners. Advances in
neural information processing systems 33:1877–1901.

Chaves, Rui P. 2020. What don’t RNN language models learn about filler-gap
dependencies? Proceedings of the Society for Computation in Linguistics 3:20–
30.

Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.
Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT

Press.
Chomsky, Noam. 1971. Problems of knowledge and freedom: The Russell lec-

tures. Pantheon Books.
Chomsky, Noam. 1975. Current issues in linguistic theory. The Hague: Mouton.
Chomsky, Noam. 1980. Rules and representations. New York: Columbia Univer-

sity Press.
Chowdhury, Shammur Absar, and Roberto Zamparelli. 2018. RNN simulations

of grammaticality judgments on long-distance dependencies. In Proceedings of
the 27th International Conference on Computational Linguistics, ed. Emily M.
Bender, Leon Derczynski, and Pierre Isabelle, 133–144. Santa Fe, New Mexico,

81

USA: Association for Computational Linguistics.
Dyer, Fred C., and Jeffrey A. Dickinson. 1994. Development of sun compensa-

tion by honeybees: How partially experienced bees estimate the sun’s course.
Proceedings of the National Academy of Sciences 91:4471–4474.

El-Naggar, Nadine, Andrew Ryzhikov, Laure Daviaud, Pranava Madhyastha, and
Tillman Weyde. 2023. Formal and empirical studies of counting behaviour
in relu rnns. In Proceedings of 16th edition of the International Conference
on Grammatical Inference, ed. François Coste, Faissal Ouardi, and Guillaume
Rabusseau, volume 217 of Proceedings of Machine Learning Research, 199–
222. PMLR.

Elman, Jeffrey L., Elizabeth Bates, M. Johnson, A. Karmiloff-Smith, D. Parisi,
and K. Plunkett. 1996. Rethinking innateness: A connectionist perspective on
development. Cambridge, MA: The MIT Press.

Engdahl, E. 1983. Parasitic gaps. Linguistics and Philosophy 6:5–34.
Foraker, Stephani, Terry Regier, Naveen Khetarpal, Amy Perfors, and Joshua

Tenenbaum. 2009. Indirect evidence and the poverty of the stimulus: The case
of anaphoric one. Cognitive Science 33:287–300.

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, MA: MIT
Press.

Gordon, Peter. 1985. Level-ordering in lexical development. Cognition 21:73–93.
Gulordava, Kristina, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco

Baroni. 2018. Colorless green recurrent networks dream hierarchically. In
Proceedings of NAACL 2018, 1195–1205.

Haı̈k, Isabelle. 1985. The syntax of operators. Doctoral Dissertation, MIT.
Hart, Betty, and Todd R. Risley. 1995. Meaningful differences in the everyday

experience of young American children. Baltimore: Paul H. Brookes.
Hornstein, Norbert, and Jairo Nunes. 2002. On asymmetries between parasitic

gap and across-the-board constructions. Syntax 5.
Hsu, Anne S., and Nick Chater. 2010. The logical problem of language acquisi-

tion: A probabilistic perspective. Cognitive Science 34:972–1016.
Huebner, Philip A., Elior Sulem, Fisher Cynthia, and Dan Roth. 2021. Baby-

BERTa: Learning more grammar with small-scale child-directed language.
In Proceedings of the 25th Conference on Computational Natural Language
Learning, ed. Arianna Bisazza and Omri Abend, 624–646. Online: Association
for Computational Linguistics.

Jozefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. 2016. Exploring the Limits of Language Modeling. arXiv:1602.02410
[cs] .

82

Katzir, Roni. 2023. Why large language models are poor theories of human lin-
guistic cognition: A reply to Piantadosi. Biolinguistics 17.

Kodner, Jordan, and Nitish Gupta. 2020. Overestimation of syntactic represen-
tation in neural language models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 1757–1762. Online: Associ-
ation for Computational Linguistics.

Kodner, Jordan, Sarah Payne, and Jeffrey Heinz. 2023. Why linguistics will
thrive in the 21st century: A reply to Piantadosi (2023). ArXiv preprint
arXiv:2308.03228.

Kuncoro, Adhiguna, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and
Phil Blunsom. 2018. LSTMs can learn syntax-sensitive dependencies well, but
modeling structure makes them better. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
1426–1436.

Lan, Nur, Emmanuel Chemla, and Roni Katzir. 2023. Benchmarking neural net-
work generalization for grammar induction. In Proceedings of the 2023 CLASP
Conference on Learning with Small Data (LSD), 131–140. Gothenburg, Swe-
den: Association for Computational Linguistics.

Lan, Nur, Emmanuel Chemla, and Roni Katzir. 2024. Bridging the empirical-
theoretical gap in neural network formal language learning using minimum de-
scription length. Submitted. arXiv preprint arXiv:2402.10013, February 2024.

Lan, Nur, Michal Geyer, Emmanuel Chemla, and Roni Katzir. 2022. Minimum
description length recurrent neural networks. Transactions of the Association
for Computational Linguistics 10:785–799.

Legate, Julie Anne, and Charles Yang. 2002. Empirical re-assessment of stimulus
poverty arguments. The Linguistic Review 19.

Lewis, John D, and Jeffery L Elman. 2001. A connectionist investigation of lin-
guistic arguments from the poverty of the stimulus: Learning the unlearnable.
In Proceedings of the Annual Meeting of the Cognitive Science Society, vol-
ume 23.

Lidz, Jeffrey, Sandra Waxman, and Jennifer Freedman. 2003. What infants know
about syntax but couldn’t have learned: Experimental evidence for syntactic
structure at 18 months. Cognition 89:B65–B73.

Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability
of LSTMs to learn syntax-sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics 4:521–535.

MacWhinney, Brian. 2014. The CHILDES Project: Tools for Analyzing Talk,
Volume II: The Database. New York: Psychology Press, 3 edition.

83

Marvin, Rebecca, and Tal Linzen. 2018. Targeted syntactic evaluation of lan-
guage models. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, ed. Ellen Riloff, David Chiang, Julia Hock-
enmaier, and Jun’ichi Tsujii, 1192–1202. Brussels, Belgium: Association for
Computational Linguistics.

Merrill, William, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and
Eran Yahav. 2020. A formal hierarchy of RNN architectures. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics,
ed. Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, 443–459.
Online: Association for Computational Linguistics.

Moro, Andrea, Matteo Greco, and Stefano F. Cappa. 2023. Large languages,
impossible languages and human brains. Cortex 167:82–85.

Munn, Alan. 1992. A null operator analysis of ATB gaps. The Linguistic Review
9:1–26.

Nissenbaum, Jon. 2000. Investigations of covert phrase movement. Doctoral
Dissertation, MIT, Cambridge, Mass.

Ozaki, Satoru, Dan Yurovsky, and Lori Levin. 2022. How well do LSTM lan-
guage models learn filler-gap dependencies? Proceedings of the Society for
Computation in Linguistics 5:76–88.

Pearl, Lisa, and Jon Sprouse. 2013. Syntactic islands and learning biases: Com-
bining experimental syntax and computational modeling to investigate the lan-
guage acquisition problem. Language Acquisition 20:23–68.

Perfors, Amy, Joshua Tenenbaum, and Terry Regier. 2011. The learnability of
abstract syntactic principles. Cognition 118:306–338.

Phillips, Colin. 2013. On the nature of island constraints II: Language learning
and innateness. In Experimental syntax and island effects, ed. Jon Sprouse and
Norbert Hornstein, 132–157. Cambridge University Press.

Piantadosi, Steven T. 2023. Modern language models refute Chomsky’s approach
to language. Ms., available at https://ling.auf.net/lingbuzz/007180, March 2023.

Postal, Paul M. 1993. Parasitic gaps and the across-the-board phenomenon. Lin-
guistic Inquiry 24:735–754.

Pullum, Geoffrey, and Barbara Scholz. 2002. Empirical assessment of stimulus
poverty arguments. The Linguistic Review 19:9–50.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1:9.

Rawski, Jon, and J Baumont. 2023. Modern language models refute nothing.
Lingbuzz Preprint .

84

Rawski, Jonathan, and Jeffrey Heinz. 2019. No free lunch in linguistics or ma-
chine learning: Response to pater. Language 95:e125–e135.

Reali, Florencia, and Morten Christiansen. 2005. Uncovering the richness of the
stimulus: Structure dependence and indirect statistical evidence. Cognitive Sci-
ence 29:1007–1028.

Ross, John R. 1967. Constraints on variables in syntax. Doctoral Dissertation,
MIT, Cambridge, MA.

Siegelmann, H. T., and E. D. Sontag. 1995. On the computational power of neural
nets. Journal of Computer and System Sciences 50:132–150.

Siegelmann, Hava T., and Eduardo D. Sontag. 1991. Turing computability with
neural nets. Applied Mathematics Letters 4:77–80.

Sprouse, Jon, Beracah Yankama, Sagar Indurkhya, Sandiway Fong, and Robert C.
Berwick. 2018. Colorless green ideas do sleep furiously: gradient acceptability
and the nature of the grammar. The Linguistic Review 35:575–599.

Strobl, Lena, William Merrill, Gail Weiss, David Chiang, and Dana Angluin.
2023. Transformers as Recognizers of Formal Languages: A Survey on Ex-
pressivity. arXiv preprint arXiv:2311.00208 .

Vázquez Martı́nez, Héctor, Annika Lea Heuser, Charles Yang, and Jordan
Kodner. 2023. Evaluating neural language models as cognitive models of
language acquisition. In Proceedings of the 1st GenBench Workshop on
(Benchmarking) Generalisation in NLP, ed. Dieuwke Hupkes, Verna Dankers,
Khuyagbaatar Batsuren, Koustuv Sinha, Amirhossein Kazemnejad, Christos
Christodoulopoulos, Ryan Cotterell, and Elia Bruni, 48–64. Singapore: As-
sociation for Computational Linguistics.

Wagers, M.W., E.F. Lau, and C. Phillips. 2009. Agreement attraction in com-
prehension: representations and processes. Journal of Memory and Language
61:206–237.

Wang, Ben, and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 billion pa-
rameter autoregressive language model. URL https://github.com/
kingoflolz/mesh-transformer-jax.

Warstadt, Alex, and Samuel R Bowman. 2022. What artificial neural networks
can tell us about human language acquisition. In Algebraic structures in natural
language, 17–60. CRC Press.

Warstadt, Alex, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-
Fu Wang, and Samuel R. Bowman. 2020. BLiMP: The benchmark of linguistic
minimal pairs for English. Transactions of the Association for Computational
Linguistics 8:377–392.

Weiss, Gail, Yoav Goldberg, and Eran Yahav. 2018. On the practical computa-

85

tional power of finite precision rnns for language recognition. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 740–745. Melbourne, Australia: Association for
Computational Linguistics.

Wilcox, Ethan, Roger Levy, and Richard Futrell. 2019. What syntactic
structures block dependencies in RNN language models? arXiv preprint
arXiv:1905.10431 .

Wilcox, Ethan, Roger Levy, Takashi Morita, and Richard Futrell. 2018. What do
RNN language models learn about filler-gap dependencies? In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 211–221.

Wilcox, Ethan Gotlieb, Richard Futrell, and Roger Levy. 2023. Using computa-
tional models to test syntactic learnability. Linguistic Inquiry 1–44.

Williams, Edwin. 1990. The ATB-theory of parasitic gaps. The Linguistic Review
6:265–279.

Williams, Edwin S. 1977. Across-the-board application of rules. Linguistic In-
quiry 8:419–423.

Wilson, Colin. 2006. Learning phonology with substantive bias: An experimental
and computational study of velar palatalization. Cognitive Science 30:945–982.

Yedetore, Aditya, Tal Linzen, Robert Frank, and R. Thomas McCoy. 2023. How
poor is the stimulus? evaluating hierarchical generalization in neural networks
trained on child-directed speech. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ed.
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, 9370–9393. Toronto,
Canada: Association for Computational Linguistics.

A Appendix: Context-Free Grammars

A.1 PG
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨UNGRAMMATICAL⟩ → ‘*’

86

⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘Bob’ | ‘John’
⟨NAME2⟩ → ‘Mary’ | ‘Jennifer’
⟨NAME3⟩ → ‘James’ | ‘Michael’
⟨NAME4⟩ → ‘Patricia’ | ‘Linda’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨GEN⟩ ⟨NP ⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨GEN⟩ ⟨NP ⟩ ⟨NAME2⟩
⟨G⟩ → ⟨LINK⟩ ⟨V ⟩ ⟨ADV 2⟩
⟨XG⟩ → ⟨LINK⟩ ⟨V ⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨NP ⟩ → ⟨NP SIMPLE⟩ | ⟨NP COMPLEX⟩
⟨NP SIMPLE⟩ → ⟨GERUND⟩
⟨NP COMPLEX⟩ → ⟨N EMBEDDED⟩ ‘to’ ⟨V EMBEDDED⟩
⟨LINK⟩ → ‘is about to’ | ‘is likely to’ | ‘is going to’ | ‘is expected to’
⟨V ⟩ → ‘bother’ | ‘annoy’ | ‘disturb’
⟨GERUND⟩ → ‘talking to’ | ‘dancing with’ | ‘playing with’
⟨N EMBEDDED⟩ → ‘decision’ | ‘intent’ | ‘effort’ | ‘attempt’ | ‘failure’
⟨V EMBEDDED⟩ → ‘talk to’ | ‘call’ | ‘meet’ | ‘dance with’ | ‘play with’
⟨ADV 1⟩ → ‘recently’ | ‘earlier’
⟨ADV 2⟩ → ‘soon’ | ‘eventually’

A.2 ATB
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨UNGRAMMATICAL⟩ → ‘*’
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘John’
⟨NAME2⟩ → ‘Mary’
⟨NAME3⟩ → ‘Bob’
⟨NAME4⟩ → ‘Patricia’
⟨PREAMBLE⟩ → ‘I know’

87

⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨V P1⟩ ⟨ADV 1⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨V P1⟩ ⟨NAME3⟩ ⟨ADV 1⟩
⟨G⟩ → ⟨LINK⟩ ⟨V P2⟩ ⟨ADV 2⟩
⟨XG⟩ → ⟨LINK⟩ ⟨V P2⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨ADV 1⟩ → ‘recently’ | ‘lately’
⟨ADV 2⟩ → ‘soon’ | ‘today’ | ‘now’
⟨LINK⟩ → ‘and is going to’
⟨V P1⟩ → ⟨V P1 SIMPLE⟩ | ⟨V P1 COMPLEX⟩
⟨V P1 SIMPLE⟩ → ‘met’ | ‘saw’
⟨V P1 COMPLEX⟩ → ⟨V P1 ABOUT ⟩ | ⟨V P1 TO⟩ | ⟨V P1 ADJ⟩ | ⟨V P1 EMBEDDED⟩
⟨V P1 ABOUT ⟩ → ⟨V ABOUT PAST ⟩ ⟨NAME2⟩ ‘about’
⟨V ABOUT PAST ⟩ → ‘asked’ | ‘told’
⟨V P1 TO⟩ → ⟨V TO PAST ⟩ ⟨NAME2⟩ ‘to’ ⟨V TRANS INF TO⟩
⟨V TO PAST ⟩ → ‘wanted’ | ‘asked’
⟨V TRANS INF TO⟩ → ‘call’ | ‘invite’
⟨V P1 ADJ⟩ → ‘was’ ⟨ADJ1⟩ ‘to’ ⟨V TRANS INF ADJ⟩
⟨ADJ1⟩ → ‘eager’ | ‘happy’
⟨V TRANS INF ADJ⟩ → ‘meet’ | ‘see’
⟨V P1 EMBEDDED⟩ → ⟨V EMBEDDING PAST ⟩ ‘that’ ⟨NAME2⟩ ⟨V TRANS PAST EMBEDDED⟩
⟨V EMBEDDING PAST ⟩ → ‘said’ | ‘insisted’
⟨V TRANS PAST EMBEDDED⟩ → ‘met’ | ‘saw’
⟨V P2⟩ → ⟨V P2 COMPLEX⟩ | ⟨V P2 SIMPLE⟩
⟨V P2 SIMPLE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 COMPLEX⟩ → ⟨V P2 ABOUT ⟩ | ⟨V P2 TO⟩ | ⟨V P2 ADJ⟩ | ⟨V P2 EMBEDDED⟩
⟨V P2 ABOUT ⟩ → ⟨V ABOUT FUTURE⟩ ‘to’ ⟨NAME4⟩ ‘about’
⟨V ABOUT FUTURE⟩ → ‘complain’ | ‘write’
⟨V P2 TO⟩ → ⟨V TO FUTURE⟩ ⟨NAME4⟩ ‘to’ ⟨V TRANS INF TO FUTURE⟩
⟨V TO FUTURE⟩ → ‘encourage’ | ‘beg’
⟨V TRANS INF TO FUTURE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 ADJ⟩ → ‘be’ ⟨ADJ2⟩ ‘to’ ⟨V TRANS INF ADJ2⟩
⟨ADJ2⟩ → ‘afraid’ | ‘glad’
⟨V TRANS INF ADJ2⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 EMBEDDED⟩ → ⟨V EMBEDDING FUTURE⟩ ‘that’ ⟨NAME4⟩ ‘will’ ⟨V TRANS FUTURE⟩
⟨V EMBEDDING FUTURE⟩ → ‘claim’ | ‘predict’
⟨V TRANS FUTURE⟩ → ‘hug’ | ‘slap’ | ‘kiss’

88

B Appendix: Model Failures
Worst 5 four-tuples of sentences per phenomenon (PG, ATB), per model (CHILDES
LSTM/Transformer, Wikipedia LSTM/Transformer, GPT-2, GPT-j, GPT-3). Sur-
prisal values are given in parentheses at the relevant position.

B.1 PG – CHILDES LSTM

(9)

+gap −gap
+filler I know who Bob’s effort to

call is going to bother
eventually (14.75)

*I know who Bob’s effort to
call is going to bother you
(0.64) eventually

−filler *I know that Bob’s effort to
call Mary is going to bother
eventually (12.74)

I know that Bob’s effort to
call Mary is going to bother
you (1.70) eventually

∆−filler −∆+filler = −3.06

(10)

+gap −gap
+filler I know who Bob’s effort to

call is going to annoy
eventually (15.82)

*I know who Bob’s effort to
call is going to annoy you
(0.39) eventually

−filler *I know that Bob’s effort to
call Mary is going to annoy
eventually (13.65)

I know that Bob’s effort to
call Mary is going to annoy
you (1.23) eventually

∆−filler −∆+filler = −3.01

(11)

+gap −gap
+filler I know who Bob’s effort to

call is going to bother soon
(13.28)

*I know who Bob’s effort to
call is going to bother you
(0.64) soon

−filler *I know that Bob’s effort to
call Mary is going to bother
soon (11.53)

I know that Bob’s effort to
call Mary is going to bother
you (1.70) soon

∆−filler −∆+filler = −2.80

89

(12)

+gap −gap
+filler I know who John’s dancing

with is going to disturb
eventually (15.03)

*I know who John’s dancing
with is going to disturb us
(1.82) eventually

−filler *I know that John’s dancing
with Mary is going to
disturb eventually (13.69)

I know that John’s dancing
with Mary is going to
disturb us (3.27) eventually

∆−filler −∆+filler = −2.80

(13)

+gap −gap
+filler I know who Bob’s failure to

meet is going to disturb
eventually (13.66)

*I know who Bob’s failure
to meet is going to disturb
us (1.63) eventually

−filler *I know that Bob’s failure to
meet Mary is going to
disturb eventually (12.41)

I know that Bob’s failure to
meet Mary is going to
disturb us (3.17) eventually

∆−filler −∆+filler = −2.79

B.2 PG – CHILDES Transformer

(14)

+gap −gap
+filler I know who Bob’s attempt

to play with is going to
bother soon (12.45)

*I know who Bob’s attempt
to play with is going to
bother us (1.55) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
going to bother soon (10.69)

I know that Bob’s attempt to
play with Jennifer is going
to bother us (3.20) soon

∆−filler −∆+filler = −3.41

(15)

+gap −gap
+filler I know who Bob’s effort to

play with is going to bother
soon (12.27)

*I know who Bob’s effort to
play with is going to bother
us (1.02) soon

−filler *I know that Bob’s effort to
play with Jennifer is going
to bother soon (10.31)

I know that Bob’s effort to
play with Jennifer is going
to bother us (2.32) soon

∆−filler −∆+filler = −3.27

90

(16)

+gap −gap
+filler I know who Bob’s attempt

to play with is about to
bother soon (12.78)

*I know who Bob’s attempt
to play with is about to
bother us (1.63) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
about to bother soon (10.91)

I know that Bob’s attempt to
play with Jennifer is about
to bother us (2.89) soon

∆−filler −∆+filler = −3.13

(17)

+gap −gap
+filler I know who Bob’s attempt

to play with is expected to
bother soon (13.39)

*I know who Bob’s attempt
to play with is expected to
bother us (2.02) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
expected to bother soon
(11.92)

I know that Bob’s attempt to
play with Jennifer is
expected to bother us (3.66)
soon

∆−filler −∆+filler = −3.10

(18)

+gap −gap
+filler I know who Bob’s failure to

play with is going to bother
soon (12.32)

*I know who Bob’s failure
to play with is going to
bother us (1.80) soon

−filler *I know that Bob’s failure to
play with Jennifer is going
to bother soon (10.63)

I know that Bob’s failure to
play with Jennifer is going
to bother us (3.14) soon

∆−filler −∆+filler = −3.03

B.3 PG – Wikipedia LSTM

(19)

+gap −gap
+filler I know who John’s intent to

call is going to bother
eventually (16.59)

*I know who John’s intent
to call is going to bother us
(4.90) eventually

−filler *I know that John’s intent to
call Jennifer is going to
bother eventually (13.47)

I know that John’s intent to
call Jennifer is going to
bother us (7.20) eventually

∆−filler −∆+filler = −5.42

91

(20)

+gap −gap
+filler I know who John’s failure to

call is going to bother
eventually (16.07)

*I know who John’s failure
to call is going to bother us
(4.93) eventually

−filler *I know that John’s failure
to call Jennifer is going to
bother eventually (13.77)

I know that John’s failure to
call Jennifer is going to
bother us (7.89) eventually

∆−filler −∆+filler = −5.26

(21)

+gap −gap
+filler I know who John’s failure to

call is going to bother soon
(15.47)

*I know who John’s failure
to call is going to bother us
(4.93) soon

−filler *I know that John’s failure
to call Jennifer is going to
bother soon (13.68)

I know that John’s failure to
call Jennifer is going to
bother us (7.89) soon

∆−filler −∆+filler = −4.74

(22)

+gap −gap
+filler I know who John’s attempt

to talk to is going to bother
eventually (15.99)

*I know who John’s attempt
to talk to is going to bother
us (4.42) eventually

−filler *I know that John’s attempt
to talk to Jennifer is going to
bother eventually (14.78)

I know that John’s attempt
to talk to Jennifer is going to
bother us (7.65) eventually

∆−filler −∆+filler = −4.44

(23)

+gap −gap
+filler I know who John’s intent to

talk to is going to bother
eventually (16.62)

*I know who John’s intent
to talk to is going to bother
you (5.39) eventually

−filler *I know that John’s intent to
talk to Jennifer is going to
bother eventually (14.89)

I know that John’s intent to
talk to Jennifer is going to
bother you (8.06) eventually

∆−filler −∆+filler = −4.41

92

B.4 PG – Wikipedia Transformer

(24)

+gap −gap
+filler I know who Bob’s attempt

to talk to is about to bother
soon (11.09)

*I know who Bob’s attempt
to talk to is about to bother
you (3.73) soon

−filler *I know that Bob’s attempt
to talk to Jennifer is about to
bother soon (7.94)

I know that Bob’s attempt to
talk to Jennifer is about to
bother you (10.53) soon

∆−filler −∆+filler = −9.95

(25)

+gap −gap
+filler I know who Bob’s attempt

to talk to is expected to
bother soon (10.01)

*I know who Bob’s attempt
to talk to is expected to
bother you (3.49) soon

−filler *I know that Bob’s attempt
to talk to Jennifer is
expected to bother soon
(7.23)

I know that Bob’s attempt to
talk to Jennifer is expected
to bother you (10.49) soon

∆−filler −∆+filler = −9.78

(26)

+gap −gap
+filler I know who Bob’s attempt

to talk to is expected to
bother eventually (10.76)

*I know who Bob’s attempt
to talk to is expected to
bother you (3.49) eventually

−filler *I know that Bob’s attempt
to talk to Jennifer is
expected to bother
eventually (8.07)

I know that Bob’s attempt to
talk to Jennifer is expected
to bother you (10.49)
eventually

∆−filler −∆+filler = −9.70

93

(27)

+gap −gap
+filler I know who John’s intent to

talk to is expected to bother
eventually (10.98)

*I know who John’s intent
to talk to is expected to
bother us (4.03) eventually

−filler *I know that John’s intent to
talk to Jennifer is expected
to bother eventually (8.32)

I know that John’s intent to
talk to Jennifer is expected
to bother us (11.06)
eventually

∆−filler −∆+filler = −9.69

(28)

+gap −gap
+filler I know who Bob’s decision

to talk to is about to bother
soon (10.66)

*I know who Bob’s decision
to talk to is about to bother
you (3.70) soon

−filler *I know that Bob’s decision
to talk to Jennifer is about to
bother soon (7.83)

I know that Bob’s decision
to talk to Jennifer is about to
bother you (10.50) soon

∆−filler −∆+filler = −9.63

B.5 PG – GPT-2

(29)

+gap −gap
+filler I know who Bob’s talking to

is going to annoy
eventually (16.51)

*I know who Bob’s talking
to is going to annoy you
(2.77) eventually

−filler *I know that Bob’s talking
to Jennifer is going to annoy
eventually (16.17)

I know that Bob’s talking to
Jennifer is going to annoy
you (4.70) eventually

∆−filler −∆+filler = −2.26

(30)

+gap −gap
+filler I know who Bob’s decision

to meet is about to bother
eventually (18.76)

*I know who Bob’s decision
to meet is about to bother
you (2.17) eventually

−filler *I know that Bob’s decision
to meet Jennifer is about to
bother eventually (18.42)

I know that Bob’s decision
to meet Jennifer is about to
bother you (4.04) eventually

∆−filler −∆+filler = −2.20

94

(31)

+gap −gap
+filler I know who John’s decision

to call is likely to disturb
soon (14.28)

*I know who John’s
decision to call is likely to
disturb you (2.73) soon

−filler *I know that John’s decision
to call Mary is likely to
disturb soon (15.19)

I know that John’s decision
to call Mary is likely to
disturb you (5.84) soon

∆−filler −∆+filler = −2.19

(32)

+gap −gap
+filler I know who John’s talking

to is likely to disturb
eventually (16.82)

*I know who John’s talking
to is likely to disturb you
(1.81) eventually

−filler *I know that John’s talking
to Jennifer is likely to
disturb eventually (16.53)

I know that John’s talking to
Jennifer is likely to disturb
you (3.68) eventually

∆−filler −∆+filler = −2.16

(33)

+gap −gap
+filler I know who Bob’s decision

to call is likely to disturb
soon (14.31)

*I know who Bob’s decision
to call is likely to disturb
you (2.70) soon

−filler *I know that Bob’s decision
to call Mary is likely to
disturb soon (15.37)

I know that Bob’s decision
to call Mary is likely to
disturb you (5.91) soon

∆−filler −∆+filler = −2.15

B.6 PG – GPT-j

(34)

+gap −gap
+filler I know who John’s attempt

to talk to is about to annoy
soon (11.48)

*I know who John’s attempt
to talk to is about to annoy
you (1.62) soon

−filler *I know that John’s attempt
to talk to Mary is about to
annoy soon (12.86)

I know that John’s attempt
to talk to Mary is about to
annoy you (4.70) soon

∆−filler −∆+filler = −1.70

95

(35)

+gap −gap
+filler I know who John’s failure to

dance with is about to annoy
eventually (13.09)

*I know who John’s failure
to dance with is about to
annoy you (1.53) eventually

−filler *I know that John’s failure
to dance with Mary is about
to annoy eventually (13.60)

I know that John’s failure to
dance with Mary is about to
annoy you (3.69) eventually

∆−filler −∆+filler = −1.66

(36)

+gap −gap
+filler I know who John’s attempt

to talk to is about to annoy
eventually (12.23)

*I know who John’s attempt
to talk to is about to annoy
you (1.62) eventually

−filler *I know that John’s attempt
to talk to Mary is about to
annoy eventually (13.71)

I know that John’s attempt
to talk to Mary is about to
annoy you (4.70) eventually

∆−filler −∆+filler = −1.59

(37)

+gap −gap
+filler I know who John’s decision

to dance with is about to
annoy eventually (13.70)

*I know who John’s
decision to dance with is
about to annoy you (1.26)
eventually

−filler *I know that John’s decision
to dance with Mary is about
to annoy eventually (13.85)

I know that John’s decision
to dance with Mary is about
to annoy you (2.95)
eventually

∆−filler −∆+filler = −1.54

(38)

+gap −gap
+filler I know who John’s decision

to dance with is about to
annoy soon (12.74)

*I know who John’s
decision to dance with is
about to annoy you (1.26)
soon

−filler *I know that John’s decision
to dance with Mary is about
to annoy soon (12.92)

I know that John’s decision
to dance with Mary is about
to annoy you (2.95) soon

∆−filler −∆+filler = −1.51

96

B.7 PG – GPT-3

(39)

+gap −gap
+filler I know who Bob’s talking to

is likely to annoy soon
(14.53)

*I know who Bob’s talking
to is likely to annoy you
(3.39) soon

−filler *I know that Bob’s talking
to Mary is likely to annoy
soon (13.53)

I know that Bob’s talking to
Mary is likely to annoy you
(7.20) soon

∆−filler −∆+filler = −4.81

(40)

+gap −gap
+filler I know who John’s talking

to is likely to annoy soon
(14.06)

*I know who John’s talking
to is likely to annoy you
(3.55) soon

−filler *I know that John’s talking
to Mary is likely to annoy
soon (13.59)

I know that John’s talking to
Mary is likely to annoy you
(7.60) soon

∆−filler −∆+filler = −4.52

(41)

+gap −gap
+filler I know who Bob’s playing

with is likely to annoy soon
(13.36)

*I know who Bob’s playing
with is likely to annoy you
(2.75) soon

−filler *I know that Bob’s playing
with Mary is likely to annoy
soon (13.46)

I know that Bob’s playing
with Mary is likely to annoy
you (6.94) soon

∆−filler −∆+filler = −4.09

(42)

+gap −gap
+filler I know who John’s talking

to is expected to annoy soon
(12.97)

*I know who John’s talking
to is expected to annoy you
(3.05) soon

−filler *I know that John’s talking
to Mary is expected to
annoy soon (12.61)

I know that John’s talking to
Mary is expected to annoy
you (6.56) soon

∆−filler −∆+filler = −3.87

97

(43)

+gap −gap
+filler I know who Bob’s talking to

is likely to annoy eventually
(15.21)

*I know who Bob’s talking
to is likely to annoy you
(3.39) eventually

−filler *I know that Bob’s talking
to Mary is likely to annoy
eventually (15.18)

I know that Bob’s talking to
Mary is likely to annoy you
(7.20) eventually

∆−filler −∆+filler = −3.84

B.8 ATB – CHILDES LSTM

(44)

+gap −gap
+filler I know who John told Mary

about lately and is going to
encourage Patricia to slap
now (9.84)

*I know who John told
Mary about lately and is
going to encourage Patricia
to slap you (1.88) now

−filler *I know that John told Mary
about Bob lately and is
going to encourage Patricia
to slap now (9.24)

I know that John told Mary
about Bob lately and is
going to encourage Patricia
to slap you (3.35) now

∆−filler −∆+filler = −2.08

(45)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to kiss
now (8.53)

*I know who John insisted
that Mary met recently and
is going to be afraid to kiss
Kim (10.20) now

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss now (8.46)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss Kim (12.17) now

∆−filler −∆+filler = −2.04

98

(46)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to kiss
today (8.56)

*I know who John insisted
that Mary met recently and
is going to be afraid to kiss
Kim (10.20) today

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss today (8.53)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss Kim (12.17) today

∆−filler −∆+filler = −2.00

(47)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to slap
now (9.34)

*I know who John insisted
that Mary met recently and
is going to be afraid to slap
Kim (9.90) now

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
slap now (9.29)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
slap Kim (11.85) now

∆−filler −∆+filler = −2.00

(48)

+gap −gap
+filler I know who John wanted

Mary to invite recently and
is going to be afraid to slap
now (9.41)

*I know who John wanted
Mary to invite recently and
is going to be afraid to slap
Kim (10.37) now

−filler *I know that John wanted
Mary to invite Bob recently
and is going to be afraid to
slap now (9.22)

I know that John wanted
Mary to invite Bob recently
and is going to be afraid to
slap Kim (12.16) now

∆−filler −∆+filler = −1.98

99

B.9 ATB – CHILDES Transformer

(49)

+gap −gap
+filler I know who John asked

Mary about lately and is
going to be afraid to slap
now (10.21)

*I know who John asked
Mary about lately and is
going to be afraid to slap us
(3.41) now

−filler *I know that John asked
Mary about Bob lately and
is going to be afraid to slap
now (9.42)

I know that John asked
Mary about Bob lately and
is going to be afraid to slap
us (4.14) now

∆−filler −∆+filler = −1.51

(50)

+gap −gap
+filler I know who John said that

Mary saw recently and is
going to slap now (10.72)

*I know who John said that
Mary saw recently and is
going to slap us (3.14) now

−filler *I know that John said that
Mary saw Bob recently and
is going to slap now (10.18)

I know that John said that
Mary saw Bob recently and
is going to slap us (4.00)
now

∆−filler −∆+filler = −1.40

(51)

+gap −gap
+filler I know who John said that

Mary saw lately and is
going to be afraid to slap
now (9.88)

*I know who John said that
Mary saw lately and is
going to be afraid to slap us
(3.24) now

−filler *I know that John said that
Mary saw Bob lately and is
going to be afraid to slap
now (9.45)

I know that John said that
Mary saw Bob lately and is
going to be afraid to slap us
(4.21) now

∆−filler −∆+filler = −1.40

100

(52)

+gap −gap
+filler I know who John asked

Mary to call lately and is
going to be afraid to slap
now (10.08)

*I know who John asked
Mary to call lately and is
going to be afraid to slap us
(3.59) now

−filler *I know that John asked
Mary to call Bob lately and
is going to be afraid to slap
now (9.83)

I know that John asked
Mary to call Bob lately and
is going to be afraid to slap
us (4.72) now

∆−filler −∆+filler = −1.38

(53)

+gap −gap
+filler I know who John said that

Mary saw recently and is
going to be afraid to slap
now (10.12)

*I know who John said that
Mary saw recently and is
going to be afraid to slap us
(3.78) now

−filler *I know that John said that
Mary saw Bob recently and
is going to be afraid to slap
now (9.98)

I know that John said that
Mary saw Bob recently and
is going to be afraid to slap
us (5.01) now

∆−filler −∆+filler = −1.37

B.10 ATB – Wikipedia LSTM

(54)

+gap −gap
+filler I know who John asked

Mary about recently and is
going to kiss soon (14.80)

*I know who John asked
Mary about recently and is
going to kiss us (8.39) soon

−filler *I know that John asked
Mary about Bob recently
and is going to kiss soon
(14.40)

I know that John asked
Mary about Bob recently
and is going to kiss us
(11.63) soon

∆−filler −∆+filler = −3.64

101

(55)

+gap −gap
+filler I know who John met

recently and is going to beg
Patricia to kiss soon (15.45)

*I know who John met
recently and is going to beg
Patricia to kiss us (10.27)
soon

−filler *I know that John met Bob
recently and is going to beg
Patricia to kiss soon (15.46)

I know that John met Bob
recently and is going to beg
Patricia to kiss us (13.61)
soon

∆−filler −∆+filler = −3.33

(56)

+gap −gap
+filler I know who John asked

Mary about recently and is
going to be glad to kiss soon
(14.47)

*I know who John asked
Mary about recently and is
going to be glad to kiss us
(9.19) soon

−filler *I know that John asked
Mary about Bob recently
and is going to be glad to
kiss soon (14.54)

I know that John asked
Mary about Bob recently
and is going to be glad to
kiss us (12.59) soon

∆−filler −∆+filler = −3.33

(57)

+gap −gap
+filler I know who John was happy

to meet recently and is
going to kiss soon (13.61)

*I know who John was
happy to meet recently and
is going to kiss you (7.32)
soon

−filler *I know that John was
happy to meet Bob recently
and is going to kiss soon
(13.36)

I know that John was happy
to meet Bob recently and is
going to kiss you (10.36)
soon

∆−filler −∆+filler = −3.29

102

(58)

+gap −gap
+filler I know who John told Mary

about recently and is going
to beg Patricia to kiss soon
(15.49)

*I know who John told
Mary about recently and is
going to beg Patricia to kiss
us (11.17) soon

−filler *I know that John told Mary
about Bob recently and is
going to beg Patricia to kiss
soon (15.26)

I know that John told Mary
about Bob recently and is
going to beg Patricia to kiss
us (14.20) soon

∆−filler −∆+filler = −3.26

B.11 ATB – Wikipedia Transformer

(59)

+gap −gap
+filler I know who John saw lately

and is going to write to
Patricia about now (8.22)

*I know who John saw
lately and is going to write
to Patricia about us (7.18)
now

−filler *I know that John saw Bob
lately and is going to write
to Patricia about now (8.21)

I know that John saw Bob
lately and is going to write
to Patricia about us (8.38)
now

∆−filler −∆+filler = −1.21

(60)

+gap −gap
+filler I know who John saw

recently and is going to
write to Patricia about now
(8.01)

*I know who John saw
recently and is going to
write to Patricia about us
(7.28) now

−filler *I know that John saw Bob
recently and is going to
write to Patricia about now
(8.11)

I know that John saw Bob
recently and is going to
write to Patricia about us
(8.53) now

∆−filler −∆+filler = −1.15

103

(61)

+gap −gap
+filler I know who John met lately

and is going to write to
Patricia about now (8.26)

*I know who John met
lately and is going to write
to Patricia about us (7.40)
now

−filler *I know that John met Bob
lately and is going to write
to Patricia about now (8.35)

I know that John met Bob
lately and is going to write
to Patricia about us (8.58)
now

∆−filler −∆+filler = −1.09

(62)

+gap −gap
+filler I know who John was happy

to see lately and is going to
write to Patricia about now
(8.46)

*I know who John was
happy to see lately and is
going to write to Patricia
about us (7.52) now

−filler *I know that John was
happy to see Bob lately and
is going to write to Patricia
about now (8.45)

I know that John was happy
to see Bob lately and is
going to write to Patricia
about us (8.54) now

∆−filler −∆+filler = −1.04

(63)

+gap −gap
+filler I know who John was happy

to meet lately and is going
to write to Patricia about
now (8.51)

*I know who John was
happy to meet lately and is
going to write to Patricia
about us (7.68) now

−filler *I know that John was
happy to meet Bob lately
and is going to write to
Patricia about now (8.57)

I know that John was happy
to meet Bob lately and is
going to write to Patricia
about us (8.72) now

∆−filler −∆+filler = −0.98

104

B.12 ATB – GPT-2

(64)

+gap −gap
+filler I know who John said that

Mary saw lately and is
going to be glad to kiss soon
(14.91)

*I know who John said that
Mary saw lately and is
going to be glad to kiss you
(4.06) soon

−filler *I know that John said that
Mary saw Bob lately and is
going to be glad to kiss soon
(16.39)

I know that John said that
Mary saw Bob lately and is
going to be glad to kiss you
(7.08) soon

∆−filler −∆+filler = −1.53

(65)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to be glad to kiss soon
(14.46)

*I know who John said that
Mary met lately and is
going to be glad to kiss you
(4.11) soon

−filler *I know that John said that
Mary met Bob lately and is
going to be glad to kiss soon
(15.85)

I know that John said that
Mary met Bob lately and is
going to be glad to kiss you
(6.93) soon

∆−filler −∆+filler = −1.43

(66)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to be glad to kiss now
(12.15)

*I know who John said that
Mary met lately and is
going to be glad to kiss you
(4.11) now

−filler *I know that John said that
Mary met Bob lately and is
going to be glad to kiss now
(13.67)

I know that John said that
Mary met Bob lately and is
going to be glad to kiss you
(6.93) now

∆−filler −∆+filler = −1.29

105

(67)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to kiss soon (13.26)

*I know who John said that
Mary met lately and is going
to kiss you (5.31) soon

−filler *I know that John said that
Mary met Bob lately and is
going to kiss soon (15.08)

I know that John said that
Mary met Bob lately and is
going to kiss you (8.30)
soon

∆−filler −∆+filler = −1.18

(68)

+gap −gap
+filler I know who John was eager

to see lately and is going to
predict that Patricia will kiss
soon (11.50)

*I know who John was
eager to see lately and is
going to predict that Patricia
will kiss Kim (10.84) soon

−filler *I know that John was eager
to see Bob lately and is
going to predict that Patricia
will kiss soon (11.45)

I know that John was eager
to see Bob lately and is
going to predict that Patricia
will kiss Kim (11.95) soon

∆−filler −∆+filler = −1.16

B.13 ATB – GPT-j

(69)

+gap −gap
+filler I know who John told Mary

about lately and is going to
hug now (8.12)

*I know who John told
Mary about lately and is
going to hug us (6.59) now

−filler *I know that John told Mary
about Bob lately and is
going to hug now (8.88)

I know that John told Mary
about Bob lately and is
going to hug us (9.42) now

∆−filler −∆+filler = −2.07

106

(70)

+gap −gap
+filler I know who John told Mary

about lately and is going to
hug today (8.69)

*I know who John told
Mary about lately and is
going to hug us (6.59) today

−filler *I know that John told Mary
about Bob lately and is
going to hug today (9.54)

I know that John told Mary
about Bob lately and is
going to hug us (9.42) today

∆−filler −∆+filler = −1.98

(71)

+gap −gap
+filler I know who John said that

Mary met recently and is
going to be afraid to hug
now (7.54)

*I know who John said that
Mary met recently and is
going to be afraid to hug us
(4.59) now

−filler *I know that John said that
Mary met Bob recently and
is going to be afraid to hug
now (9.06)

I know that John said that
Mary met Bob recently and
is going to be afraid to hug
us (8.07) now

∆−filler −∆+filler = −1.96

(72)

+gap −gap
+filler I know who John said that

Mary met recently and is
going to be afraid to slap
now (10.08)

*I know who John said that
Mary met recently and is
going to be afraid to slap us
(4.22) now

−filler *I know that John said that
Mary met Bob recently and
is going to be afraid to slap
now (10.79)

I know that John said that
Mary met Bob recently and
is going to be afraid to slap
us (6.81) now

∆−filler −∆+filler = −1.88

107

(73)

+gap −gap
+filler I know who John told Mary

about recently and is going
to be afraid to hug today
(10.32)

*I know who John told
Mary about recently and is
going to be afraid to hug us
(6.16) today

−filler *I know that John told Mary
about Bob recently and is
going to be afraid to hug
today (11.78)

I know that John told Mary
about Bob recently and is
going to be afraid to hug us
(9.46) today

∆−filler −∆+filler = −1.84

B.14 ATB – GPT-3

(74)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be afraid to hug now (8.21)

*I know who John told
Mary about lately and is
going to be afraid to hug
you (5.06) now

−filler *I know that John told Mary
about Bob lately and is
going to be afraid to hug
now (8.39)

I know that John told Mary
about Bob lately and is
going to be afraid to hug
you (8.09) now

∆−filler −∆+filler = −2.85

(75)

+gap −gap
+filler I know who John told Mary

about lately and is going to
slap now (9.43)

*I know who John told
Mary about lately and is
going to slap you (4.70) now

−filler *I know that John told Mary
about Bob lately and is
going to slap now (10.25)

I know that John told Mary
about Bob lately and is
going to slap you (8.27) now

∆−filler −∆+filler = −2.75

108

(76)

+gap −gap
+filler I know who John told Mary

about lately and is going to
slap soon (7.22)

*I know who John told
Mary about lately and is
going to slap you (4.70)
soon

−filler *I know that John told Mary
about Bob lately and is
going to slap soon (8.33)

I know that John told Mary
about Bob lately and is
going to slap you (8.27)
soon

∆−filler −∆+filler = −2.47

(77)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be glad to slap soon (9.32)

*I know who John told
Mary about lately and is
going to be glad to slap you
(3.35) soon

−filler *I know that John told Mary
about Bob lately and is
going to be glad to slap
soon (9.52)

I know that John told Mary
about Bob lately and is
going to be glad to slap you
(5.82) soon

∆−filler −∆+filler = −2.27

(78)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be glad to slap today
(10.41)

*I know who John told
Mary about lately and is
going to be glad to slap you
(3.35) today

−filler *I know that John told Mary
about Bob lately and is
going to be glad to slap
today (10.64)

I know that John told Mary
about Bob lately and is
going to be glad to slap you
(5.82) today

∆−filler −∆+filler = −2.24

109

C Appendix: Context-Free Grammars for Retrain-
ing Task (Section 5)

C.1 PG – retraining corpus
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘Bob’ | ‘John’
⟨NAME2⟩ → ‘Mary’ | ‘Jennifer’
⟨NAME3⟩ → ‘James’ | ‘Michael’
⟨NAME4⟩ → ‘Patricia’ | ‘Linda’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨GEN⟩ ⟨SUBJ⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨GEN⟩ ⟨SUBJ⟩ ⟨NAME2⟩
⟨G⟩ → ⟨G PAST ⟩ | ⟨G FUTURE⟩
⟨XG⟩ → ⟨XG PAST ⟩ | ⟨XG FUTURE⟩
⟨G PAST ⟩ → ⟨V P PAST ⟩ ⟨ADV PAST ⟩
⟨G FUTURE⟩ → ⟨V P FUTURE⟩ ⟨ADV FUTURE⟩
⟨XG PAST ⟩ → ⟨V P PAST ⟩ ⟨XG OBJ⟩ ⟨ADV PAST ⟩
⟨XG FUTURE⟩ → ⟨V P FUTURE⟩ ⟨XG OBJ⟩ ⟨ADV FUTURE⟩
⟨V P PAST ⟩ → ‘upset’ | ‘distracted’ | ‘worried’ | ‘annoyed’ | ‘amused’ | ‘delighted’
⟨V P FUTURE⟩ → ‘will’ ⟨V FUTURE⟩
⟨V FUTURE⟩ → ‘upset’ | ‘distract’ | ‘worry’ | ‘annoy’ | ‘amuse’ | ‘delight’
⟨XG OBJ⟩ → ⟨NAME4⟩ | ⟨OBJ⟩
⟨SUBJ⟩ → ‘attitude towards’ | ‘friendship with’ | ‘praising of’ | ‘fight with’ | ‘kissing with’ | ‘asking about’
⟨ADV PAST ⟩ → ‘yesterday’ | ‘recently’ | ‘often’ | ‘constantly’ | ‘today’ | ‘lately’ | ‘earlier’
⟨ADV FUTURE⟩ → ‘today’ | ‘soon’ | ‘tomorrow’ | ‘now’ | ‘quickly’

110

C.2 ATB – retraining corpus
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘John’
⟨NAME2⟩ → ‘Mary’
⟨NAME3⟩ → ‘Bob’
⟨NAME4⟩ → ‘Patricia’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨SUBJ F ⟩
⟨XF ⟩ → ‘that’ ⟨SUBJ XF ⟩
⟨CONN⟩ → ‘and’
⟨SUBJ F ⟩ → ⟨ONE SUBJ F ⟩ | ⟨TWO SUBJ F ⟩
⟨SUBJ XF ⟩ → ⟨ONE SUBJ XF ⟩ | ⟨TWO SUBJ XF ⟩
⟨ONE SUBJ F ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩
⟨TWO SUBJ F ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩ ⟨NAME3⟩
⟨ONE SUBJ XF ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨NAME2⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩
⟨TWO SUBJ XF ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨NAME2⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩ ⟨NAME3⟩
⟨G⟩ → ⟨G PAST ⟩ | ⟨G FUTURE⟩
⟨XG⟩ → ⟨XG PAST ⟩ | ⟨XG FUTURE⟩
⟨XG PAST ⟩ → ⟨V P2 PAST ⟩ ⟨XG OBJ⟩ ⟨ADV PAST 2⟩
⟨XG FUTURE⟩ → ⟨V P2 FUTURE⟩ ⟨XG OBJ⟩ ⟨ADV FUTURE⟩
⟨G PAST ⟩ → ⟨V P2 PAST ⟩ ⟨ADV PAST 2⟩
⟨G FUTURE⟩ → ⟨V P2 FUTURE⟩ ⟨ADV FUTURE⟩
⟨XG OBJ⟩ → ⟨NAME4⟩ | ⟨OBJ⟩
⟨V 1⟩ → ‘saw’ | ‘hugged’ | ‘helped’ | ‘met’ | ‘pushed’ | ‘praised’ | ‘chased’ | ‘hired’ | ‘invited’ | ‘promoted’ | ‘warned’
⟨V P2⟩ → ⟨V P2 PAST ⟩ | ⟨V P2 FUTURE⟩
⟨V P2 PAST ⟩ → ⟨V 2 PAST ⟩
⟨V 2 PAST ⟩ → ‘kissed’ | ‘slapped’ | ‘insulted’ | ‘annoyed’ | ‘hurt’ | ‘mocked’ | ‘teased’ | ‘supported’ | ‘married’
⟨V P2 FUTURE⟩ → ‘will’ ⟨V 2 FUTURE⟩
⟨V 2 FUTURE⟩ → ‘kiss’ | ‘slap’ | ‘insult’ | ‘annoy’ | ‘hurt’ | ‘mock’ | ‘tease’ | ‘support’ | ‘marry’
⟨ADV PAST 1⟩ → ‘yesterday’ | ‘recently’ | ‘often’ | ‘constantly’
⟨ADV PAST 2⟩ → ‘today’ | ‘lately’ | ‘earlier’ | ‘regularly’ | ‘repeatedly’

111

⟨ADV FUTURE⟩ → ‘today’ | ‘soon’ | ‘tomorrow’ | ‘now’ | ‘quickly’

112

Résumé français

Ce résumé est une version informelle, le lecteur est invité à se référer aux docu-

ments de référence disponibles dans le cœur de la thèse, pour un résumé comme

pour les détails des résultats.

L’objectif de cette thèse est de déterminer comment les réseaux de neurones

artificiels (RNA) diffèrent des humains en termes de capacités de généralisation,

et comment alors réduire les différences potentielles. Les RNA ont connu une

croissance fulgurante ces dernières années, à une croissance à la fois en termes

de leur succès et de leur taille. L’hypothèse principale de cette thèse est qu’en

imposant des contraintes de simplicité rationnelles, de plus petits RNA pourraient

être en mesure d’effectuer de meilleures généralisations.

Cette thèse présente une nouvelle proposition, suivie de trois études. Dans

le chapitre 1, nous proposons un nouveau type de réseaux neuronaux récur-

rents (RNR), dans lesquels les objectifs d’apprentissage standards sont rem-

placés/complétés par un objectif de minimisation de la longueur de description

minimale (Minimum Description Length – MDL) du réseau lui-même. En appli-

quant ce principe, on obtient intentionnellement des RNN beaucoup plus petits

qui peuvent apprendre, en toute généralité, certains langages formels qui étaient

hors de portée des ANNs standards.

Les chapitres 2 et 3 suggèrent donc qu’un changement d’objectif d’apprentissage

pourrait être nécessaire pour atteindre une généralisation de niveau humain dans

les RNAs. Dans le chapitre 2, nous proposons un moyen systématique d’inspecter

113

les capacités de généralisation des modèles artificiels à l’aide de langages formels.

Nous publions plusieurs ensembles de données d’étalonnage qui unifient et nor-

malisent les résultats précédents présents dans la littérature de façon dispersés.

Nous montrons que les performances des RNA existants, même ceux équipés

d’architectures plus expressives, sont inférieures à celles du modèle MDL du

chapitre 1.

Dans le chapitre 3, nous construisons manuellement un réseau qui capture

parfaitement le langage anbn, et nous montrons qu’il ne se situe pas aux optima

des objectifs standards. En revanche, ce réseau parfait en terme de comportement,

est bel et bien un optimum pour l’objectif MDL que nous proposons.

Dans le chapitre 4, nous mettons de côté la question de l’objectif d’apprentissage

et examinons les connaissances linguistiques acquises par les grands modèles de

langage (LLM). Pour ce faire, nous considérons l’argument de la pauvreté du

stimulus (APS) - l’argument longtemps débattu selon laquelle l’apprentissage du

langage doit reposer sur des capacités innées chez les humains, sans quoi l’input

linguistique à la disposition d’un enfant ne lui permettrait pas de faire les général-

isations qu’il fait. Nous montrons que, contrairement à de précédents résultats,

les LLM ont du mal à acquérir une connaissance satisfaisante de phénomènes

syntaxiques pour lesquels les humains ont des jugements clairs (‘parasitic gap’ et

‘across-the-board movement’).

Étant donné que les LLM modernes sont entraînés à partir de quantités mas-

sives de données, qui dépassent de plusieurs ordres de grandeur l’expérience

114

linguistique des enfants, nous concluons que ces échecs soutiennent l’affirmation

selon laquelle les humains sont dotés de moyens spécifiques qui rendent possible

l’acquisition de tels phénomènes à partir de beaucoup moins d’inputs, c’est-à-dire

qu’ils soutiennent l’APS. En d’autres termes, les êtres humains ont des biais

d’apprentissage, et ce sont ces biais qui leur permettent de converger vers des

langues communes à partir d’un input similaire. En réalité, tous les systèmes

d’apprentissage ont de tels biais, des priors dit-on dans la terminologie bayésienne,

mais leurs biais sont différents.

Chapitre 1

Un système d’apprentissage efficace fait des généralisations appropriées. Par

exemple, après avoir vu la séquence 1,0,1,0,1, nous pouvons soupçonner que

l’élément suivant sera 0. Si nous voyons alors 0, nous pourrions être encore

plus sûrs que l’élément suivant sera 1. Les réseaux de neurones artificiels ont

montré des résultats impressionnants dans un large éventail de domaines, notam-

ment les données linguistiques, la vision et bien d’autres. Ils excellent dans la

généralisation lorsque de grands corpus de formation et de grandes ressources

informatiques sont disponibles, mais ils sont confrontés à de sérieux défis qui

deviennent particulièrement évidents lorsqu’ils généralisent à partir de petites

séquences d’entrée comme celle présentée ci-dessus.

Premièrement, les réseaux de neurones artificiels ont tendance à suivre de trop

près leurs données d’entraînement. Pour éviter cela, ils ont besoin de mesures

115

extérieures pour contrôler leur propre tendance à la mémorisation (telles que la

régularisation) ainsi que de très grands corpus d’entraînement. Pour cela, il existe

des techniques dites de régularisation, mais elles échouent dans de nombreux cas,

comme nous le montrons ci-dessous.

Deuxièmement, même lorsque ces méthodes de régularisation réussissent,

elles ont tendance à produire des résultats non catégoriques. Autrement dit, les

réseaux de neurones sont potentiellement capables d’assigner des probabilités

très élevées à une bonne réponse, mais jamais 100

Troisièmement, ces réseaux sont souvent très grands, et il est généralement

très difficile d’inspecter un réseau donné et de déterminer ce qu’il sait réellement

(bien que voir Lakretz et al. 2019 pour une récente tentative réussie d’interroger

ces connaissances dans un contexte linguistique).

Certains des défis ci-dessus découlent du recours aux approches connexion-

nistes courantes sur l’algorithme de "Backpropagation" comme méthode de forma-

tion, qui maintient l’architecture neuronale elle-même constante tout au long de la

recherche. L’architecture choisie doit donc être suffisamment grande pour répon-

dre à la tâche donnée, et il est naturel de dépasser les limites en termes de taille.

De plus, il nécessite que les opérations mises en jeu soient différentiables. Cette

contrainte rend inapplicable la méthode pour la recherche de certains modèles

catégoriels, voire même pour la possibilité de les exprimer.

Dans cet article, nous proposons d’étudier une méthode d’entraînement qui dif-

fère des approches courantes au sens où une partie de son objectif est d’optimiser

116

des propriétés structurelles du réseau, la “longueur minimale de description”

(Minimum Description Length, MDL; Rissanen:1978).

Cela revient à minimiser l’erreur comme d’habitude, en même temps que de

minimiser la taille du réseau lui-même (une pression similaire à un biais bayésien

de taille, ou de parcimonie). En conséquence, la fonction objectif offre un guide

pour déterminer la taille du réseau (un guide que la minimisation des erreurs à

elle seule ne fournit pas), ce qui signifie que l’architecture elle-même peut évoluer

au cours de l’apprentissage et peut potentiellement diminuer en taille.

Un effet secondaire potentiel est que l’optimisation ne peut pas être réalisée

uniquement par Backpropagation. Nous utilisons ici un algorithme génétique

pour effectuer une recherche dans le très vaste espace d’hypothèses de réseaux de

neurones de différentes tailles.

Nous constatons que les réseaux optimisés pour leur MDL atteignent des

généralisations adéquates à partir de très petits corpus et évitent le “overift”. Les

réseaux optimisés pour MDL sont tous petits et transparents ; nous fournissons des

preuves d’exactitude qui se résument à des ensembles de tests infinis et exhaustifs.

Ces réseaux peuvent également fournir des résultats déterministes lorsque cela

est pertinent (exprimant une confiance pure de 100

Nos résultats montrent qu’un modèle optimisé pour MDL arrive à des réseaux

qui sont proches de la véritable distribution avec de petits corpus d’entraînement,

pour des tâches qui sont considérées classiquement difficiles. Dans plusieurs

cas, les réseaux obtiennent des scores parfaits. Au-delà de l’évaluation habituelle

117

en termes de performances sur des ensembles de tests, les réseaux se prêtent à

une inspection directe et montrent un énoncé explicite du modèle qui a généré le

corpus.

Chapitre 2

La mesure dans laquelle les réseaux de neurones artificiels se généralisent au-delà

de leurs données de formation reste une question de recherche ouverte.

Dans ce travail, nous abordons cette question du point de vue de l’induction

grammaticale, c’est-à-dire l’apprentissage d’une grammaire formelle à partir

d’un échantillon fini (souvent petit) d’un langage (généralement infini) de cette

grammaire. Pour réussir cette tâche, un modèle d’apprentissage doit trouver un

équilibre entre l’ajustement des données d’entraînement et la généralisation à un

ensemble potentiellement infini de chaînes invisibles.

Les humains testés sur de telles tâches montrent une généralisation systéma-

tique à partir de petits ensembles d’exemples (Fitch et Hauser 2004, Malassis et

al. 2020).

Bien qu’il ait été démontré qu’une gamme d’architectures de réseaux de

neurones artificiels atteignent des approximations pour les langages formels,

la qualité de cette approximation reste une question ouverte, comme nous le

montrons ci-dessous.

Ici, nous nous appuyons sur des études précédentes de généralisation de

réseaux de neurones artificiels pour l’induction grammaticale et introduisons une

118

manière unifiée et générale d’évaluer cette capacité, pour une paire donnée d’un

modèle d’apprentissage et d’un corpus tiré d’un langage formel.

Nos contributions principales sont :

1. Un benchmark pour l’apprentissage formel des langues. Le benchmark

s’appuie sur une méthode de quantification de la généralisation de réseaux de neu-

rones artificiels pour les langages formels, y compris les langages probabilistes.

La méthode attribue un score d’indice représentant les performances de général-

isation d’un modèle en relation inverse avec la taille des données d’entraînement.

Nous présentons la méthode et fournissons des ensembles de données concrets

pour les langages formels les plus couramment étudiés.

2. Une évaluation des architectures sélectionnées. Nous testons des réseaux de

neurones récurrents (RNN) de l’architecture Long-Short Term Memory (LSTM ;

Hochreiter 1997) ; RNN à mémoire augmentée (MARNN ; Suzgun et al. 2019);

et une variante RNN qui remplace le régime d’entraînement traditionnel basé sur

le gradient par un objectif qui optimise la longueur minimale de description du

réseau (MDLRNN ; Lan et al. 2022).

Nous constatons qu’équiper les réseaux de neurones artificiels de dispositifs

de mémoire tels que des stacks différentiables facilite la généralisation, mais

la généralisation reste partielle et lente. En revanche, l’entraînement guidé par

MDL conduit dans certains des cas que nous avons examinés à une généralisation

potentiellement parfaite, en utilisant beaucoup moins de données. Dans d’autres

cas, l’entraînement guidé par MDL n’a pas abouti à une généralisation réussie,

119

potentiellement car la procédure d’optimisation que nous avons utilisée pour la

recherche d’architecture n’a pas réussi à trouver l’optimum global sous la fonction

objectif MDL.

Nous avons fourni un indice simple indiquant dans quelle mesure un modèle

effectue des généralisations : combien peut-il apprendre à partir de peu de données.

Nous avons illustré l’utilité de cet indice dans une comparaison de plusieurs

modèles actuels apprenant différents langages formels. En plus de montrer quels

modèles existants généralisent mieux que d’autres, le benchmark met également

en évidence quels aspects des réseaux de neurones artificiels fonctionnent bien

pour l’induction grammaticale, et ce qui manque encore.

Parmi les langages appris avec une parfaite précision (anbn, anbmcn+m, Dyck-

1), les MDLRNN ont généralisé le mieux. Ils ont toutefois échoué quand même

dans d’autres (anbncn, anbncndn, et Dyck-2). Des travaux précédents avaient

montré que la procédure de recherche de ce modèle, un algorithme génétique,

ne parvient dans certains cas pas à trouver des réseaux ayant de meilleurs scores

MDL (Lan et al. 2022). Nous interprétons cela comme indice que la procédure

d’optimisation limite le modèle et l’empêche de tirer pleinement parti de l’objectif

MDL. L’avantage de l’objectif MDL est néanmoins évident dans les performances

de généralisation pour plusieurs langages.

Les MARNN bénéficient clairement de leurs dispositifs de mémoire et at-

teignent de bons scores de généralisation, mais les tests de précision parfaite

(epsilon=0) révèlent que leurs résultats d’apprentissage sont pour la plupart ap-

120

proximatifs et qu’ils ne parviennent pas à maintenir une précision parfaite pendant

de longues périodes au-delà de leurs données d’entraînement.

Cela pourrait être le résultat d’une fonction d’objectif inadéquate (cross-

entropy), de limitations de l’algorithme de recherche (Backpropagation/gradient

descent), ou des deux. Nous ne disposons pas actuellement de résultats permettant

de trancher cette question, mais des résultats récents pour d’autres architectures

(El-Naggar et al. 2023) suggèrent que le problème réside au moins en partie dans

la fonction objectif.

Chapitre 3

L’exploration des capacités des réseaux de neurones artificiels (ANN) dans le

domaine de l’apprentissage des langages formels a progressé dans deux voies

complémentaires : théorique et empirique. Les travaux théoriques tentent de

délimiter les types de langages et de phénomènes qui peuvent être exprimés par

les réseaux de neurones artificiels, et les travaux empiriques impliquent de former

des réseaux à de telles tâches et d’inspecter leurs performances.

Un fait souvent négligé est que ces chemins n’ont toujours pas convergé :

tandis que les travaux théoriques continuent de fournir des résultats encourageants

concernant l’expressivité de différentes architectures, les travaux empiriques

continuent d’aboutir à des solutions sous-optimales qui sont en deçà des solutions

théoriquement correctes.

Par exemple, pour les langages formels tels que anbn ou Dyck-1, entre autres,

121

nous n’avons conscience d’aucun réseau entraîné par gradient descent qui se

soit révélé performant sur des séquences significativement plus longues que les

séquences observées lors de l’entraînement. En revanche, les défaillances aux

faibles longueurs sont omniprésentes (Joulin et Mikolov 2015, Weiss et al. 2018,

Suzgun et al. 2019, Bhattamishra et al. 2020, El-Naggar et al. 2022, entre

autres ; voir Lan et al. 2023 pour un aperçu). Cela contraste avec les modèles

symboliques, pour lesquels la précision et la stabilité de la solution sur toutes les

longueurs sont satisfaites de manière triviale.

La raison pour laquelle cela serait le cas est souvent soit laissée inexpliquée,

soit considérée comme une lacune de la méthode d’optimisation (le plus souvent,

gradient descent utilisant la Backpropagation). Dans ce travail, nous proposons

l’idée que ces échecs ne sont pas dus à des problèmes techniques qui pourraient

être surmontés, par exemple, en utilisant une recherche plus exhaustive d’hyper-

paramètres d’optimisation. Ils sont plutôt dus aux caractéristiques inhérentes

des objectifs actuellement utilisés pour de telles tâches: l’objectif pourrait être

parfaitement satisfait, sans que la solution ne soit celle recherchée.

Nos principales contributions sont :

1. Nous présentons un réseau Long-Short Term Memory (LSTM ; Hochreiter

et Schmidhuber 1997) optimal, construit manuellement, qui accepte le langage

formel anbn, suivant une recette générale donnée par Weiss et al. (2018). Nous

montrons que ce réseau ne pourrait pas être trouvé en utilisant des objectifs

standards, puisqu’il ne se situe pas aux points optimaux de ces objectifs — même

122

en utilisant des termes de régularisation qui, selon l’opinion commune, devraient

aboutir à des bonnes solutions générales.

2. Nous montrons qu’en remplaçant ces objectifs et termes de régularisation

par un objectif de minimiser la longueur minimale de description du réseau (MDL,

Rissanen 1978), accompagné d’un schéma de codage intuitif, le réseau optimal

devient un optimum de l’objectif.

Nous nous appuyons principalement sur trois travaux récents, que nous prolon-

geons de la manière suivante. Premièrement, les travaux actuels sont similaires

à ceux d’El-Naggar et al. 2023, qui a inspecté le rôle de la fonction objectif

dans l’apprentissage des langages formels. Cette œuvre a montré que pour un

simple réseau de neurones récurrent (RNN), qui utilise une seule couche ReLU,

la solution de comptage optimale ne correspond pas aux optima des fonctions

de perte communes (cross-entropy et MSE). Cela a été fait en fournissant les

conditions nécessaires et suffisantes pour la mise en œuvre du comptage dans un

ReLU-RNN.

Nous étendons ce travail des manières suivantes. Tout d’abord, nous passons

au RNN LSTM le plus couramment utilisé. Cette architecture étant plus complexe,

il est également plus difficile de trouver des conditions suffisantes et nécessaires

pour le comptage, comme le font El-Naggar et al. (2023). Cela laisse nos résultats

essentiellement empiriques, par rapport à leur résultat analytique. Cependant,

nous allons au-delà de ce travail en proposant également un objectif alternatif

(MDL), pour lequel le réseau optimal devient un optimum.

123

Deuxièmement, afin de localiser un tel optimum de l’objectif, nous constru-

isons un LSTM optimal qui accepte un langage formel spécifique. Pour cela,

nous nous appuyons sur Weiss et al. (2018), qui ont montré qu’un LSTM peut

théoriquement mettre en œuvre un comptage en utilisant des configurations spéci-

fiques, de sorte que le vecteur de mémoire contienne un compteur qui peut être

incrémenté et décrémenté en fonction des entrées présentées au réseau. Ici, nous

implémentons leur recette générale pour construire un LSTM optimal qui accepte

le langage anbn. Nous nous concentrons sur un seul langage afin de simplifier la

présentation. La méthode peut être facilement étendue à plusieurs langages.

Troisièmement, et le plus proche des travaux actuels, Lan et al. (2022) ont

appliqué le principe MDL aux RNN pour l’apprentissage de langages formels.

Les réseaux résultants se sont révélés corrects pour n’importe quelle chaîne pour

des langages tels que anbn, anbmcn+m et Dyck-1.

Puisque cet objectif aboutissait à une fonction d’erreur non différentiable,

Lan et al. (2022) ont utilisé la neuroévolution pour naviguer l’espace des hy-

pothèses, en faisant évoluer des cellules RNN de forme libre. Puisque nous nous

focalisons dans ce travail sur l’objectif, nous laissons ici de côté l’algorithme de

recherche et utilisons une seule architecture fixe (LSTM) pour laquelle une cible

théorique est connue. Nous inspectons ensuite l’effet de la fonction objectif sur

les configurations potentielles du réseau.

Plus largement, des travaux empiriques utilisant les RNN pour l’apprentissage

de la grammaire artificielle ont été menés au moins depuis l’introduction des

124

RNN simples dans Elman (1990). Les travaux théoriques concernant la puissance

de calcul théorique des RNN remontent au moins à Siegelmann et Sontag (1992),

qui ont montré que les RNN sont Turing-complets sous certaines hypothèses

permissives (précision d’activation infinie et temps d’exécution illimité). Le

succès empirique des ANN dans le domaine pratique du traitement du langage

naturel (NLP) a conduit à un intérêt récent pour la puissance théorique des RNN

dans des conditions pratiques, principalement le traitement en temps réel et la

précision finie (Weiss et al. 2018, Merrill et al. 2020). D’autres œuvres récentes

ont appliqué des méthodes similaires à l’architecture du Transformer (voir aperçu

dans Strobl 2023).

En termes de résultats empiriques, des travaux depuis Elman (1990) ont

entraîné des réseaux de neurones artificiels à reconnaître les langages formels et

ont le plus souvent testé leur capacité de généralisation en utilisant des longueurs

et des profondeurs de chaînes de caractères inédites (Gers et Schmidhuber 2001,

Joulin et Mikolov 2015, entre autres).

Lan et al. (2023) donnent un aperçu de ces travaux ; ils montrent que le

point commun de ces travaux est l’incapacité à généraliser au-delà d’une cer-

taine longueur testée. Lan et al. (2023) fournissent également une référence

standardisée pour l’apprentissage des langages formels et constatent que les RNN

formés pour optimiser les fonctions d’erreur standardes ne parviennent pas à bien

généraliser à partir de quantités raisonnablement petites de données, tandis qu’une

variante de RNN formée pour minimiser MDL Lan et al. (2022) est capable de

125

généraliser nettement mieux (potentiellement à l’infini).

L’application du critère MDL aux réseaux de neurones artificiels remonte

également au moins au début des années 1990 (voir Schmidhuber (1997) pour

un aperçu des premières tentatives dans ce domaine, et Lan et al. (2022) pour

un examen des travaux plus récents.) Hinton et VanCamp (1993) ont minimisé

la longueur de codage des poids ainsi que l’erreur de prédiction, tout en laissant

l’architecture fixe.

Hochreiter et Schmidhuber (1994) ont fourni un algorithme qui recherche

les réseaux qui se situent à des « minima plats » – des régions de l’espace des

paramètres où l’erreur reste relativement similaire ; cette préférence reçoit une

justification MDL.

Zhang et Muhlenbein (1993) ont utilisé un algorithme génétique pour rechercher

des architectures de réseau minimisant un objectif MDL, en utilisant un codage

de poids similaire à la régularisation L2. Schmidhuber (1997) a présenté un

algorithme pour découvrir des réseaux qui optimisent une métrique de complexité

basée sur le temps d’exécution, qui est liée au MDL (complexité de Levin).

En fin de compte, nous présentons une comparaison entre les techniques

courantes de prévention de surajustement, parmi lesquelles certaines qui assim-

ilent la simplicité à la grandeur scalaire, et l’objectif MDL accompagné d’un

schéma de codage pour les paramètres de réseau qui favorise une notion intuitive

de simplicité.

Combiné avec un LSTM construit manuellement qui reconnaît le langage

126

formel anbn de manière optimale, nous sommes arrivés à mesurer les valeurs de

l’objectif d’une solution optimale et à vérifier si elles s’alignent sur les points

optimaux de la fonction d’erreur. Ce n’est que lorsque nous avons utilisé MDL que

le réseau optimal s’est aligné sur le minimum de l’erreur. Pour les autres fonctions

d’erreur, les réseaux situés aux points minimaux avaient des performances loin

d’être optimales. L’utilisation de méta-heuristiques telles que Early Stopping

a atténué dans une certaine mesure le surapprentissage, mais n’a toujours pas

conduit à une solution parfaitement générale.

Nous interprétons ces résultats comme un indicateur que l’incapacité des ANN

à converger vers des solutions optimales dont il est prouvé qu’elles existent n’est

pas accidentelle, mais plutôt une propriété inhérente et pathologique de la manière

dont les modèles actuels sont entraînés. Cela se rajoute à une liste croissante

d’échecs de généralisation dans l’apprentissage des langages formels, ainsi qu’à

des tâches plus complexes en langage naturel.

Nous nous sommes concentrés sur les RNN, principalement parce qu’ils se

prêtent facilement à la construction et à l’inspection manuelles. Cependant, nous

ne voyons aucune raison a priori pour laquelle nos résultats ne s’étendraient pas à

d’autres architectures telles que les Transformers ou les réseaux convolutifs, étant

donné la généralité du principe MDL et le fait qu’il s’est avéré bénéfique dans

de divers domaines et tâches d’apprentissage, y compris pour les phénomènes

linguistiques (voir Stolcke 1994, Grunwald 1996, de Marcken 1996 et Rasin et al.

2021, entre autres).

127

Chapitre 4

Les linguistes dits "génératifs" argumentent que les humains sont nés avec des

biais non triviaux, cette position reposant sur des cas où les connaissances lin-

guistiques des locuteurs vont au-delà de ce qui paraît justifié par les données

auxquelles ils ont été exposés. Cela peut également être exprimé de la manière

suivante : Si les humains parviennent systématiquement à une connaissance à

partir de certaines données, alors que des modèles dits "linguistiquement neutres"

exposés aux mêmes données n’y parviennent pas, nous pouvons conclure que les

humains ne sont pas linguistiquement neutres : ils arrivent préparés à la tâche de

l’acquisition du langage.

Les raisonnements de ce genre sont connu sous le nom de L’argument de la

pauvreté du stimulus (The Argument From the Poverty of the Stimulus, APS),

et depuis son introduction par Noam Chomsky il y a plus de 50 ans, il était au

cœur de l’étude de la capacité linguistique humaine. Dans cet article nous nous

concentrerons sur un APS concernant le mouvement wh, alors que d’autres APS

divers ont été discutés dans la littérature sur la base d’une série de phénomènes

empiriques tels que la "one-substitution" (introduite dans Baker 1978), l’inversion

sujet-auxiliaire (introduit dans Chomsky 1971) et Plurals in Compounds (intro-

duits dans Gordon 1985).

Les APS que nous venons de mentionner (ainsi que d’autres) ont été con-

sidérées comme un argument en faveur des biais innés non-triviaux chez les

humains. Par exemple, l’APS de l’inversion sujet-auxiliaire a été considérée

128

comme soutenant un biais inné en faveur des transformations hiérarchiques par

rapport aux transformations linéaires. L’APS du mouvement wh dont nous discu-

tons ci-dessous soutiendra de la même manière un biais complexe dont un modèle

linguistiquement neutre n’est pas censé s’en emparer. Il en va de même pour les

autres APS dans la littérature. En cela, ces APS vont au-delà de l’observation

initiale selon laquelle les enfants peuvent produire et comprendre une infinitude

de phrases après être exposé à seulement un nombre fini de phrases (Chomsky

1957, p. 15). Même si généraliser à partir de données finies à un langage infini

n’est peut-être pas entièrement trivial, cela est néanmoins à la portée de la plupart

des algorithmes d’apprentissage. Et surtout, cette capacité n’implique aucun biais

qu’un apprenant linguistiquement neutre n’est pas censé avoir.

Si l’APS a joué un rôle central dans le raisonnement linguistique, il a également

généré de nombreuses controverses. Contester une APS donnée nécessite de

remettre en question soit les connaissances acquises par les humains, soit les

informations dont dispose l’enfant. C’est ces dernières qui sont souvent remises

en question : il est extrêmement difficile d’évaluer quelles informations exactes

sont disponibles pour l’enfant pendant la période de temps concernée (souvent

des années d’apprentissage) et il est très difficile de dire ce qu’un modèle général

et linguistiquement neutre en ferait.

On peut essayer de rechercher des éléments de preuve qui semblent pertinents

pour les connaissances en jeu — par exemple, comme cela a été fait pour le

cas de l’inversion sujet-auxiliaire en anglais par Legate et Yang (2002) — mais

129

comme le notent Lewis et Elman (2001), Perfors et al. (2011), parmi d’autres,

cette méthodologie risque de sous-estimer les informations disponibles : même

si nous ne parvenons pas à trouver les preuves que nous cherchons, un modèle

général pourrait être en mesure de tirer parti d’autres sources d’informations.

Cette méthodologie risque également de surestimer les informations disponibles

: même si nous trouvons plusieurs exemples des preuves que nous recherchons,

un apprenant généraliste pourrait traiter ces exemples comme du bruit et ne pas

parvenir à tirer la conclusion que nous attendons intuitivement. En l’absence

d’un véritable modèle qui est capable d’utiliser les informations disponibles

dans l’ensemble d’un corpus, il est tout simplement très difficile d’estimer si les

données soutiennent les connaissances considérées.

Comment alors raisonner sur l’information dont dispose l’enfant et se deman-

der si elle suffit à favoriser l’acquisition d’un phénomène donné par un modèle

linguistiquement neutre ? Dans un monde idéal, on prendrait: (a) un modèle

suffisamment puissant, que l’on peut considérer comme non-biaisé en faveur

des connaissances pertinentes ; (b) entraîner ce modèle à partir d’un corpus qui

correspond au stimulus linguistique que reçoivent les enfants ; et (c) vérifier si le

modèle a effectivement acquis les phénomènes considérés.

Dans un tel monde idéal, on pourrait potentiellement travailler avec un al-

gorithme d’induction pour des grammaires non-restreintes, ou avec un langage

de programmation général tel que Python. Ces formalismes sont capables de

représenter les genres de phénomènes considérés par les linguistes, et à la fois

130

peuvent être considérés en tant que linguistiquement neutres. Dans notre cas,

alors que les grammaires non-restreintes et les programmes Python peuvent

facilement représenter l’équivalent du mouvement wh, y compris les subtilités

des îles, rien dans l’un ou l’autre cadre ne semble favoriser a priori de telles

représentations. On peut bien sûr envisager d’autres cadres de représentation,

y compris des formalismes moins puissants (par exemple les grammaires hors

contexte) à condition qu’ils puissent toujours représenter les connaissances lin-

guistiques mais ne soient pas biaisés en leur faveur. Il faudrait toujours s’assurer

que l’algorithme d’apprentissage lui-même ne biaise pas le modèle pour ou contre

les connaissances linguistiques, mais cela peut être fait de différentes manières,

par exemple en utilisant un modèle bayésien a priori linguistiquement neutre.

Après un entraînement à partir d’un corpus développementalement vraisemblable,

correspondant à quelques années d’expérience linguistique humaine, les con-

naissances acquises par l’algorithme peuvent alors être directement inspectées à

l’étape (c).

Dans la réalité actuelle, la combinaison des étapes (a) à (c) est actuellement im-

possible. Pendant de nombreuses années, la combinaison de (a) et (b) constituait

déjà un obstacle majeur. Les algorithmes généraux d’induction de programmes

du type que nous venons de mentionner, par exemple, abordent (a) mais échouent

sur (b), car ils sont limités à de très petits corpus de formation. À l’autre extrémité

de l’échelle, les modèles n-grammes peuvent facilement être entraînés sur de

très grands corpus, répondant ainsi à (b), mais leur capacité de représentation est

131

beaucoup trop limitée pour capturer ou même approximer de manière adéquate

des connaissances linguistiques telles que le mouvement wh. D’autres modèles,

tels que les grammaires hors-contexte probabilistes, se situent entre ces deux

extrémités mais ont toujours du mal à combiner (a) et (b) lorsqu’il s’agit de

phénomènes tels que le mouvement wh.

Le défi de l’évaluation des informations dont dispose l’enfant est devenu

moins un obstacle ces derniers temps, avec l’avènement des grands modèles

de langage (Large Language Models, LLM). Ces modèles, qui s’appuient sur

des architectures modernes de réseaux de neurones artificiels, ne répondent pas

encore pleinement aux points (a) à (c) — une question qui a été abordée dans la

littérature récente et sur laquelle nous reviendrons ci-dessous — mais ils peuvent

être entraînés à partir de très grands corpus et réussissent généralement assez

bien à acquérir des dépendances séquentielles. Cela a permis à une littérature

importante et croissante d’utiliser ces modèles pour poser des questions concer-

nant l’apprentissage des connaissances linguistiques des LLM, souvent avec une

référence spécifique à l’APS. Ces travaux commençant par Linzen et al. (2016) et

incluant Bernardy et Lappin (2017), Chowdhury et Zamparelli (2018), Gulordava

et al. (2018), Kuncoro et al. (2018), Marvin et Linzen (2018), Wilcox et al. (2018,

2019, 2023), Bhattacharya et van Schijndel (2020), Chaves (2020), Warstadt et al.

(2020), Huebner et al. (2021), Ozaki et al. (2022), et Yedetore et al. (2023), entre

autres, qui ont examiné la préférence des LLM au sein de paires minimales. Nous

nous concentrons ici sur l’application des LLM au domaine du mouvement wh, à

132

la suite de Wilcox et al. (2018, 2019, 2023), Chowdhury et Zamparelli (2018),

Bhattacharya et van Schijndel (2020), Chaves (2020), Warstadt et al. (2020) et

Ozaki et al. (2022). En particulier, nous examinons la conclusion de Wilcox et

al. (2023 ; WFL) que les modèles actuels réfutent un APS dans ce domaine : un

APS qui dit que les données ne sont pas suffisamment riches pour permettre à un

modèle général d’acquérir le mouvement wh.

L’APS a depuis longtemps été au cœur du raisonnement des linguistes sur

l’innéité. Il a toujours été difficile, cependant, d’estimer la quantité d’informations

qu’un modèle linguistiquement neutre pourrait espérer extraire de données en

pratique. Les réseaux de neurones artificiels modernes promettent de changer

cela, et leurs connaissances et leur apprentissage linguistiques ont fait l’objet

de recherches dans une littérature croissante. Nous nous concentrons ici sur

WFL, qui utilise les LLM pour affirmer que le stimulus est suffisamment riche

en matière de mouvement wh et que cela démantèle l’APS dans ce domaine.

Nous montrons que cette conclusion est prématurée : en examinant les Parasitic

Gaps et le mouvement Across-The-Board, nous montrons que plusieurs ANN

ne parviennent pas à atteindre une approximation satisfaisante du phénomène du

mouvement wh.

Est-il possible que, à l’avenir, un modèle linguistiquement neutre réussisse là

où les modèles que nous avons examinés ont échoué ? Bien sûr. Comme nous en

discutons, les modèles actuels sont trop opaques et trop mal compris (et les corpus

de formation actuels sont trop irréalistes sur le plan du développement) pour

133

trancher définitivement la question de savoir si l’APS pour le mouvement wh est

valable. Nous notons cependant que les architectures que nous considérons réus-

sissent généralement à approximer de nombreux autres aspects des phénomènes

linguistiques et que nous évaluons les modèles en utilisant un critère de réussite

extrêmement clément. Et certains modèles ont reçu des apports linguistiques

très généreux, dans certains cas plusieurs ordres de grandeur au-delà de ce que

les enfants humains reçoivent. Étant donné qu’aucun des LLM n’a atteint une

approximation adéquate pour les exemples relativement simples que nous avons

considérés – et étant donné qu’au moins un réseau semble capable d’améliorer

son approximation lorsqu’il est entraîné sur un corpus biaisé favorablement –

nous trouvons plus probable que le stimulus soit tout simplement trop faible

pour justifier l’acquisition des aspects pertinents de la connaissance à partir d’un

corpus qui est même vaguement réaliste sur le plan du développement par un

apprenant linguistiquement neutre. Et si cela s’avère être le cas, la connaissance

de ces aspects par les locuteurs adultes est la preuve que les enfants sont de

manière innée équipé d’un algorithme d’apprentissage linguistique biaisé pour

l’apprentissage des langues telles que nous les connaissons.

134

ABSTRACT

The goal of the thesis is to discover how Artificial Neural Networks (ANNs) differ from
humans in terms of generalization capabilities, and how one might bridge this gap. ANNs
have exploded in recent years, both in terms of success and of their own sizes. The main
proposal in the thesis is that by imposing rational simplicity constraints, smaller ANNs
might be able to achieve better generalizations.

MOTS CLÉS

Réseaux de neurones artificiels ; Modèles de langage ; Longueur de description
minimale ; L'argument de la pauvreté du stimulus.

RÉSUMÉ

L'objectif de cette thèse est de déterminer comment les réseaux de neurones artificiels
(RNA) diffèrent des humains en termes de capacités de généralisation, et comment alors
réduire les différences potentielles. Les RNA ont connu une croissance fulgurante ces
dernières années, à une croissance à la fois en termes de leur succès et de leur taille.
L’hypothèse principale de cette thèse est qu’en imposant des contraintes de simplicité
rationnelles, de plus petits RNA pourraient être en mesure d’effectuer de meilleures
généralisations.

KEYWORDS

Artificial neural networks ; Language models ; Minimum Description Length ; The
Argument from the Poverty of the Stimulus.

	Acknowledgments
	Introduction
	Minimum Description Length Recurrent Neural Networks (joint with Michal Geyer, Emmanuel Chemla, and Roni Katzir)
	Benchmarking Neural Network Generalization for Grammar Induction (joint with Emmanuel Chemla and Roni Katzir)
	Bridging the Empirical-Theoretical Gap in Neural Network Formal Language Learning Using Minimum Description Length (joint with Emmanuel Chemla and Roni Katzir)
	Large Language Models and the Argument From the Poverty of the Stimulus (joint with Emmanuel Chemla and Roni Katzir)
	Résumé français

